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Abstract

We define and study expansion problems on countable structures in the
setting of descriptive combinatorics. We consider both expansions on countable
Borel equivalence relations and on countable groups, in the Borel, measure
and category settings, and establish some basic correspondences between the
two notions. We also prove some general structure theorems for measure
and category. We then explore in detail many examples, including finding
spanning trees in graphs, finding monochromatic sets in Ramsey’s Theorem,
and linearizing partial orders.

1 Introduction
A countable Borel equivalence relation (CBER) on a Polish space X is a Borel
equivalence relation E ⊆ X2 whose equivalence classes are countable. Given a CBER
E, a (Borel) structuring of E is a Borel assignment of a first-order structure on each
E-class C (see Sections 2.5 and 3.1 for precise definitions).

In this paper, we are primarily concerned with the descriptive combinatorics
of locally countable structures. Broadly speaking, given a combinatorial problem
on countable structures, we are interested in solving it in a “uniformly Borel” way,
possibly after throwing away a meagre set or a null set. For instance, given a Borel
structuring of a CBER E by countable graphs, we may be interested in characterizing
exactly when one can find a Borel colouring of these graphs with countably many
colours, i.e., a colouring so that the assignment of the colour classes to the vertices in
each E-class is a Borel structuring of E. Other examples of combinatorial problems
include finding proper edge colourings, perfect matchings or spanning trees in graphs,
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finding infinite monochromatic sets (as in Ramsey’s Theorem), and extending a given
partial order into a linear order; see Section 2.2 for more. We refer the reader to
[KM20; Pik21] for a survey of results in descriptive combinatorics, and to [CK18;
BC24] for more on the structurability of CBER.

For “locally finite” structures, many of these combinatorial problems can be
expressed in terms of constrain satisfaction or locally checkable labelling problems
on graphs. In this setting, there has been a lot of recent progress towards finding
solutions to various expansion problems, using tools from theoretical computer science
and finite combinatorics such as the Lovász Local Lemma and connections with
LOCAL algorithms in distributed computing [Ber23; BCGGRV22; GR23]. However,
we note that many problems are not locally finite and hence do not fit within this
framework; for example, linearizations of partial orders, or Ramsey’s Theorem (see
e.g. [GX24]).

Here, we consider these problems in the more general framework of expansions.
Given first-order languages L ⊆ L∗ and an L-structure A, we call an L∗-structure
A∗ an expansion of A if A = A∗↾L, where A∗↾L denotes the reduct of A∗ to L. If
K is a class of L structures and K∗ is a class of L∗-structures, the expansion problem
for (K, K∗) is the problem of determining whether every structure in K admits an
expansion in K∗. For a countably infinite set X, let K(X) denote the set of structures
in K whose universe is X, and call K a Borel class of structures if K(X) is Borel for
all countably infinite sets X.

Given an expansion problem (K, K∗) for which every element of K admits an
expansion to an element of K∗, we get a corresponding “uniformly Borel” expansion
problem: For every CBER E and any structuring of E with elements of K, is there a
structuring of E with elements of K∗ which is an expansion of the original structuring
on every E-class? In general, one can view this Borel expansion problem as asking if
there is a “canonical” assignment of an expansion in K∗ to every element of K; this is
made precise in [CK18, arXiv version, Appendix B; BC24].

One can also interpret the Borel expansion problem in terms of definable equiv-
ariant maps. If Γ is a group acting on a countably infinite set X and (K, K∗) is an
expansion problem with K, K∗ Borel, we may consider the Γ-equivariant expansion
problem: Is there a Borel map f : K(X) → K∗(X), taking A ∈ K(X) to an expansion
f(A), which is equivariant with respect to the induced action of Γ on K(X), K∗(X)?

There is a natural correspondence between Γ-equivariant expansions for countable
groups Γ, in the special case where Γ acts on X = Γ by multiplication on the
left, and CBER which arise via free Borel actions of Γ (see Section 3.2). By the
Feldman–Moore Theorem, every CBER is induced by a Borel action of a countable
group, though in general we cannot expect this action to be free [Kec24, Section 11].
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Nevertheless, CBER induced by free Borel actions of countable groups are a great
source of (counter-)examples in the study of Borel expansions on CBER (especially
with respect to the Schreier graphs of their actions), and remain very relevant in the
study of the descriptive combinatorics of locally countable structures.

The primary objective of this paper is to study this correspondence between the
Borel expansion problem on CBER and the Borel equivariant expansion for countable
groups Γ. More generally, we study also the connection between these problems in the
settings of measure and category, i.e., when we are allowed to solve these problems
after possibly removing a null or meagre set. We shall see that by exploiting this
connection, we can apply results and techniques from the theory of CBER to prove
theorems about equivariant expansions on countable groups (see e.g. Sections 3.4, 3.5
and 4). Conversely, we apply tools from symbolic dynamics and probability theory
(such as the mass transport principle and random walks on groups) to the study of
equivariant expansions, which gives in some cases precise characterizations of exactly
when certain structurings of CBER admit definable expansions (c.f. Sections 3.3, 3.6
and 4).

The connection between expansions on CBER and equivariant expansions in the
purely Borel setting has been studied independently in [BC24], with the goal of
making precise the relation between the existence of Borel expansions on CBER and
“canonical” expansions from K to K∗. There, Banerjee and Chen [BC24, Corollary 3.29,
Remark 2.25] show that every Borel structuring of a CBER admits a Borel expansion if
and only if there is a Borel SN-equivariant expansion map, for classes K of structures
that interpret the theories of Lusin–Novikov functions and countable separating
families (c.f. [BC24, Definitions 3.18, 3.23]). (We note however that the classes we
study in this paper do not interpret these theories.) Expansion problems have also
been studied in the context of invariant random structures on groups, i.e., invariant
probability measures on K(Γ), and one can view equivariant expansions as a natural
strengthening of this notion; see e.g. [KM20, Sections 6, 15] for some examples in
graph combinatorics, or [GLM24; Alp22] for linearizations of partial orders.

Organization. The structure of this paper is as follows. In Section 2 we give
precise definitions of expansions on CBER and equivariant expansions on groups for
expansion problems, in the Borel, Baire category and measurable settings. We also
give examples of various expansion problems of interest, that we study in detail in
Section 4.

In Section 3, we prove several general theorems relating equivariant expansions
on groups Γ with Borel expansions on CBER induced by free Borel actions of Γ. We
describe in Section 3.2 a weak duality between the two notions, which can be viewed
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as an analogue of [BC24, Corollary 3.29] for this setting. We then consider random
expansions for countable groups, where we say an invariant measure ν on K∗(Γ) is a
random expansion of an invariant measure µ on K(Γ) when the reduct of ν is equal to
µ (c.f. Section 2.3). We show that the existence of random expansions on Γ depends
only on its orbit equivalence class, where we say groups Γ, Λ are orbit equivalent if
there is a CBER E induced by free probability-measure-preserving actions of both Γ
and Λ.

Theorem 1.1 (Theorem 3.7). Let (K, K∗) be an expansion problem and Γ, Λ be
countably infinite groups. If Γ, Λ are orbit equivalent, then Γ admits random expansions
from K to K∗ if and only if Λ admits random expansions from K to K∗.

We note that this has already been observed in some special cases, for example with
linearizations in [Alp22], though we show here that it holds more generally for all
expansion problems. We also give a sort of converse in Proposition 3.8.

Next, we consider generic equivariant expansions on Gδ classes of structures, i.e.,
equivariant expansions on comeagre subsets of K(Γ) (c.f. Section 2.3). Given an
expansion problem (K, K∗) and a countably infinite group Γ, we say K admits Γ-
equivariant expansions generically if there is a comeagre invariant Borel set X ⊆ K(Γ)
such that there is a Borel Γ-equivariant expansion map X → K∗(Γ). We show that
when K consists of structures with trivial algebraic closure that are not definable
from equality, whether or not K admits Γ-equivariant expansions to K∗ generically
is independent of the group Γ. (A structure is said to have trivial algebraic closure
if its automorphism group has infinite orbits, even after fixing finitely many points,
and is definable from equality when relations between tuples of points depend only
on their equality types; see Definition 3.11 for precise definitions of these terms.)

Theorem 1.2 (Theorem 3.13). Let (K, K∗) be an expansion problem. Suppose that K
is Gδ and the generic element of K has trivial algebraic closure and is not definable
from equality. Then the following are equivalent:

1. For every countably infinite group Γ, K admits Γ-equivariant expansions to K∗

generically.

2. There exists a countably infinite group Γ for which K admits Γ-equivariant
expansions to K∗ generically.

A CBER E is smooth if there is a Borel set that contains exactly one point from
every E-class. We give in Section 3.6 sufficient conditions for an expansion problem
to satisfy (a) that every structuring of a smooth CBER admits a Borel expansion
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(Proposition 3.22 and Remark 3.23), or (b) that every non-smooth CBER admits a
structuring with no Borel expansion (Proposition 3.25 and Corollary 3.26).

In Section 4 we analyze in detail the expansion problem for the examples described
in Section 2.2, using in particular the tools we developed in Section 3. We summarize
our results in Table 1; we highlight a few of these below.

Call a CBER aperiodic if it has only infinite equivalence classes. In [KST99] it is
shown that for every non-smooth aperiodic CBER E, there are Borel sets A, B which
have infinite intersection with every E-class, but for which there is no Borel bijection
f : A → B whose graph is contained in E. By contrast, we have the following:

Proposition 1.3 (Generic bijections (Proposition 4.3)). Let E be an aperiodic CBER
on X and A, B ⊆ X be sets that have infinite intersection with every E-class. Then
there is a comeagre E-invariant set Y ⊆ X and a Borel bijection f : A ∩ Y → B ∩ Y
whose graph is contained in E, i.e., such that xEf(x) for all x ∈ A ∩ Y .

The problem of whether an invariant random partial order on a countably infinite
group Γ can be linearized was studied in [GLM24; Alp22]. Alpeev [Alp22] has shown
that this random expansion property holds for Γ if and only if Γ is amenable. By
contrast, for equivariant maps and CBER we have the following:

Proposition 1.4 (Linearizations (Propositions 4.11 and 4.12)).

1. Let K be the class of partial orders and K∗ be the class of linear orders extending
a given partial order. For every countably infinite group Γ, K does not admit
Γ-equivariant expansions to K∗ generically.

2. For every non-smooth CBER E, there is a Borel assignment of a partial order
to every E-class so that there is no Borel way of extending these partial orders
to linear orders on every E-class. Moreover, if E is aperiodic then one can
ensure that for every E-invariant probability Borel measure µ, there is no Borel
extension of the partial orders to linear orders µ-a.e.

A CBER E is treeable if there is a Borel assignment of a connected acyclic graph
to every E-class. The class of treeable CBER has been studied extensively; see e.g.
[Kec24, Section 10]. In Section 4.5, we consider CBER E that admit Borel spanning
trees for every Borel assignment of a connected graph to every E-class. Clearly every
such CBER is treeable. We show that the hyperfinite CBER have this property, where
a CBER is said to be hyperfinite if it can be written as an increasing union of CBER
with finite equivalence classes.
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Proposition 1.5 (Spanning trees (Proposition 4.16)). Let E be a CBER. If E is
hyperfinite, then for every Borel assignment of a connected graph to each E-class,
there is a Borel assignment of a spanning tree to each E-class.

It is unknown whether the class of CBER with this spanning tree property coincides
with the treeable CBER or the hyperfinite CBER, or if it lies somewhere in between.

As a final example, we consider the problem of choosing from a linear order
without endpoints a subset that is order-isomorphic to Z, in a Borel way. We give
a complete classification of the invariant random structures on countably infinite
groups that admit random expansions for this problem, and show moreover that
these expansions can always be taken to come from equivariant Borel maps. In
particular, this characterizes exactly when a Borel structuring of a CBER admits a
Borel expansion for this problem µ-a.e., for any invariant measure µ.

Proposition 1.6 (Z-lines (Propositions 4.18 and 4.20)).

1. Let K be the class of linear orders without endpoints, and K∗ be the class of linear
orders without endpoints along with a subset of order-type Z. For any countably
infinite group Γ, K does not admit Γ-equivariant expansions to K∗ generically.
In particular, every non-smooth CBER E admits a Borel assignment of linear
orders to every E-class so that there is no Borel way to choose an infinite subset
of each E-class that has order-type Z.

2. There is a Borel Γ-invariant set X ⊆ K(Γ) and a Borel equivariant expansion
map f : X → K∗(Γ) such that, for all invariant random K-structures µ on Γ,
µ admits a random expansion to K∗ if and only if µ(X) = 1, in which case
f∗µ gives such an expansion. Moreover, we can choose f so that for all L ∈ X,
f(L) picks out an interval in L.

We also give in Section 4.7 a survey of recent results regarding the existence
of Borel proper edge colourings of bounded-degree graphs (i.e. definable Vizing’s
Theorem), and in Section 4.8 a survey of the current landscape regarding the existence
of Borel perfect matchings in bipartite graphs (i.e. definable Hall’s Theorem).

We end with a list of open problems in Section 5.
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2 Preliminaries
For a background on general descriptive set theory, see [Kec95]. For a survey of the
theory of CBER, see [Kec24]. For the basics of structurability of CBER, see [CK18].

2.1 Languages and structures
By a language, we will always mean a countable relational first-order language, i.e.,
a countable set L = {Ri : i ∈ I}, where each Ri is a relation symbol with associated
arity ni ≥ 1.

Fix now a language L and let X be a set. An L-structure on X is a tuple
A = (X, RA)R∈L where RA ⊆ Xn for each n-ary relation symbol R ∈ L. We call X
the universe of A, and let ModL(X) denote the space of L-structures on X.

For A ∈ ModL(X) and Y ⊆ X, let A↾Y ∈ ModL(Y ) denote the restriction of
A to Y , given by

RA↾Y (y1, . . . , yn) ⇐⇒ RA(y1, . . . , yn)
for all n-ary R ∈ L and y1, . . . , yn ∈ Y . For L′ ⊆ L, we let A↾L′ = (X, RA)R∈L′

denote the reduct of A to L′, i.e., the structure we get when we “forget” the relations
in L \ L′. (Note that the notation A↾(−) is used both for restrictions and reducts;
which one we are referring to throughout this paper will be clear from context.)

If A is an L-structure on X and f : X → Y is a bijection, we write f(A) for the
push-forward structure on Y , i.e., the structure on Y given by

RA(x0, . . . , xn−1) ⇐⇒ Rf(A)(f(y0), . . . , f(yn−1))

for all n-ary relations R ∈ L. When X = Y this defines the logic action of SX on
ModL(X), where SX is the group of bijections of X.

We are primarily interested in the cases where X is a countably infinite set, or
when X is a Polish space. We will reserve the symbols A, B, . . . for L-structures on
countable sets, and the symbols A,B, . . . for L-structures on Polish spaces.

When X is a countable set, one can view ModL(X) as a compact Polish space,
namely,

ModL(X) =
∏
i∈I

2Xni .
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The logic action of SX on ModL(X) is continuous for this topology.
By a class of L-structures, we mean a class K of countably infinite L-structures

closed under isomorphism. Given such a class K and a countably infinite set X, we
let K(X) = K ∩ ModL(X) denote the space of L-structures in K with universe X.
We call K a Borel class of L-structures (resp. a Gδ class of L-structures, a
closed class of L-structures) if K(X) is Borel (resp. Gδ, closed) as a subset of
ModL(X) for some (equivalently any) countably infinite set X.

For a countably infinite set X and an L-structure A let AgeX(A) denote the age
of A (on X), that is, the set finite L′-structures that that embed into A and whose
universe is contained in X, for finite L′ ⊆ L. Let

AgeX(K) =
⋃

{AgeX(A) : A ∈ K(X)}

for any class K of L-structures. For A0 ∈ AgeX(ModL) and A ∈ ModL(X), we write
A0 ⊑ A if (A↾L′)↾F = A0, where A0 is an L′-structure with universe F ⊆ X. The
topology of K(X) is generated by basic clopen sets of the form

N(A0) = {A ∈ K(X) : A0 ⊑ A}

for A0 ∈ AgeX(K). We note that there is an analogous logic action of SX on AgeX(K).
We note that our definition of the age of A differs from the usual one (see e.g.

[Hod93, Section 7]), which considers all finite L-structures that embed into A without
restricting to finite sublanguages. We choose here to restrict to finite sublanguages
so that AgeX(K) corresponds naturally to a basis for the topology on K(X). (We
specify the universe X in AgeX(K) for the same reason.)

2.2 Expansions
Let L ⊆ L∗ be languages, A be an L-structure and A∗ be an L∗-structure. We say
A∗ is an expansion of A if A∗↾L = A.

Given a class of L-structures K and a class of L∗-structures K∗ with L ⊆ L∗, the
expansion problem for (K, K∗) is the question of whether or not every element of
K admits an expansion in K∗. We call such pairs (K, K∗) expansion problems.

Below we give examples of expansion problems (K, K∗) we will consider in this
paper. In all of these examples the expansion problem will have a positive solution,
i.e., every element of K admits an expansion in K∗; we will be interested in finding
“definable” expansions, for various notions of definability that we make precise below.

We omit L, L∗ from these examples, as they will be clear from context.
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Example 2.1 (Bijections).

K = {(X, R, S) | R, S ⊆ X & X, R, S are all countably infinite},

K∗ = {(X, R, S, T ) | (X, R, S) ∈ K & T is the graph of a bijection R → S}.

In this case, K, K∗ are Gδ.

Example 2.2 (Ramsey’s Theorem).

K = {(X, R, S) | R, S partition [X]2},

K∗ = {(X, R, S, T ) | (X, R, S) ∈ K & T ⊆ X is infinite
and homogeneous for the partition R, S},

where [X]2 is the set of two-element subsets of X. Here K is closed and K∗ is Gδ.
Ramsey’s Theorem is exactly the statement that every element of K admits an
expansion in K∗.

Example 2.3 (Linearizations).

K = {(X, P ) | P is a partial order on X},

K∗ = {(X, P, L) | (X, P ) ∈ K & P ⊆ L & L is a linear order on X}.

K, K∗ are both closed classes of structures.

Example 2.4 (Vertex colourings). Fix d ≥ 2, and let

K = {(X, E) | (X, E) is a connected graph of max degree ≤ d},

K∗ = {(X, E, S0, . . . , Sd) | (X, E) ∈ K & S0, . . . , Sd is a vertex colouring of (X, E)}.

Here K, K∗ are Gδ.

Example 2.5 (Spanning trees).

K = {(X, E) | (X, E) is a connected graph},

K∗ = {(X, E, T ) | (X, E) ∈ K & (X, T ) is a spanning subtree of (X, E)}.

K, K∗ are both Gδ.

Example 2.6 (Z-lines).

K = {(X, L) | (X, L) is a linear order without endpoints},

K∗ = {(X, L, Z) | (X, L) ∈ K & Z ⊆ X & (Z, L↾Z) ∼= (Z, <)},

where < is the usual order on Z. Here K is Gδ, and K∗ is Borel.
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Example 2.7 (Vizing’s Theorem). Fix d ≥ 2, and let

K = {(X, E) | (X, E) is a connected graph of max degree ≤ d},

K∗ = {(X, E, S0, . . . , Sd) | (X, E) ∈ K & S0, . . . , Sd is an edge colouring of (X, E)}.

Here K, K∗ are Gδ. Vizing’s Theorem states that every element of K admits an
expansion in K∗.

Example 2.8 (Matchings). A bipartite graph is said to satisfy Hall’s Condition
if |A| ≤ |N(A)| for every finite set of vertices A contained in one part of the graph,
where N(A) denotes the set of neighbours of A. We say a graph is locally-finite if
every vertex has finitely-many neighbours. Let now

K = {(X, E) | (X, E) is a connected, bipartite,
locally finite graph satisfying Hall’s Condition},

K∗ = {(X, E, M) | (X, E) ∈ K & M ⊆ E is a perfect matching}.

Here K, K∗ are Borel, and by Hall’s Theorem every element of K admits an expansion
in K∗.

2.3 Equivariant and random expansions
Let (K, K∗) be an expansion problem, X be a countably infinite set, Γ ≤ SX be a
subgroup of SX and Z ⊆ K(X) be Γ-invariant. We say a map f : Z → K∗(X) is
Γ-equivariant if it commutes with the Γ action, i.e., γ · f(A) = f(γ · A) for all
γ ∈ Γ, A ∈ K(X). We call a function f : Z → K∗(X) an expansion map if f(A) is
an expansion of A for all A ∈ K(X).

In this paper, we will always consider the case where Γ is a countably infinite
group acting on X = Γ by multiplication on the left. It may also be interesting to
consider the more general setting where the action of Γ on X is not free, though we
do not explore this here.

Let Γ be a countably infinite group. Given a Γ-invariant Borel set Z ⊆ K(Γ), we
say Z admits Γ-equivariant expansions to K∗ if there is a Borel Γ-equivariant
expansion map Z → K∗(Γ). If Z = K(Γ), we say K admits Γ-equivariant
expansions to K∗. If K is a Gδ class of structures, we say K admits Γ-equivariant
expansions to K∗ generically if Z admits a Γ-equivariant expansion to K∗ for
some Γ-invariant dense Gδ set Z ⊆ K(Γ).

We let P (K(Γ)) denote the space of probability Borel measures on K(Γ). Note
that the action of Γ on K(Γ) gives rise to an action of Γ on P (K(Γ)), where γ ·µ = γ∗µ
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is the push-forward of µ under γ : K(Γ) → K(Γ). We say µ is Γ-invariant if it is
fixed by the Γ-action, in which case we say µ is an invariant random K-structure
on Γ.

If µ is an invariant random K-structure on Γ, we say K admits Γ-equivariant
expansions to K∗ µ-a.e. if Z admits a Γ-equivariant expansion to K∗ for some
Γ-invariant µ-conull set Z ⊆ K(Γ).

Note that the reduct π : K∗(Γ) → K(Γ) induces a map π∗ : P (K∗(Γ)) → P (K(Γ)).
If µ (resp. ν) is an invariant random K-structure (resp. K∗-structure) on Γ, we say
ν is a Γ-invariant random expansion of µ to K∗ if π∗ν = µ. We say µ admits
a Γ-invariant random expansion to K∗ if such a ν exists, and that Γ admits
random expansions from K to K∗ if this holds for all such µ. Note that if K
admits Γ-equivariant expansions to K∗ µ-a.e., then µ admits a Γ-invariant random
expansion to K∗.

We may omit Γ from these definitions when it is clear from context.

2.4 Countable Borel equivalence relations
A countable Borel equivalence relation (CBER) is an equivalence relation E
on a standard Borel space X which is Borel as a subset of X2, and whose equivalence
classes [x]E are countable for all x ∈ X.

If Γ is a group acting on a set X, we let EX
Γ ⊆ X2 denote the orbit equivalence

relation
xEX

Γ y ⇐⇒ ∃γ ∈ Γ(γ · x = y)
induced by the action of Γ on X. When Γ is countable, X is standard Borel and
the action of Γ is Borel, then EX

Γ is a CBER. Conversely, by the Feldman–Moore
Theorem [FM77], every CBER E on a standard Borel space X is the orbit equivalence
relation induced by a Borel action of some countable group Γ on X.

By the free part of an action of Γ on X we mean the set

Fr(X) = {x ∈ X : ∀γ ̸= 1Γ(γ · x ̸= x)}.

Note that when X is standard Borel and the action is Borel, Fr(X) is Borel in X.
Moreover, if X is Polish and the action of Γ is continuous, then Fr(X) is Gδ in X,
hence Polish in the subspace topology.

Given a CBER E on X and A ⊆ X, we let [A]E = {x ∈ X : ∃y ∈ A(xEy)}
denote the (E-)saturation of A. We say A is E-invariant if [A]E = A. Note that
by the Feldman–Moore Theorem, if A is Borel then so is [A]E. We call A a complete
section for E if X = [A]E.
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Let E, F be CBER on X, Y respectively. We say that a Borel map f : X → Y is
a homomorphism from E to F , denoted f : E →B F , if xEy =⇒ f(x)Ff(y). It is
a reduction f : E ≤B F if the converse holds as well, i.e., xEy ⇐⇒ f(x)Ff(y); an
embedding f : E ⊑B F if it is an injective reduction; an isomorphism f : E ∼=B F
if it is a surjective embedding; a class-bijective homomorphism f : E →cb

B F if it
is a homomorphism for which f : [x]E → [f(x)]F is a bijection for all x ∈ X; and an
a invariant embedding f : E ⊑i

B F if it is a class-bijective reduction.
A CBER E is finite if all of its classes are finite, and aperiodic if all of its classes

are infinite. Given a CBER E on X, we can always partition X into Borel pieces
Y, Z on which E is respectively finite and aperiodic.

A CBER E is smooth if E ≤B ∆Y , where Y is equality on a standard Borel
space Y . Equivalently, E is smooth iff it admits a Borel selector, i.e., a Borel map
s : X → X which is E-invariant (a homomorphism s : E → ∆X) and so that s(x)Ex
for all x ∈ X. The Glimm–Effros Dichotomy for CBER states that for every
CBER E, either E is smooth or E0 ⊑B E, where E0 is the eventual equality relation

xE0y ⇐⇒ ∃n∀k(xn+k = yn+k)

on 2N, c.f. [Kec24, Theorem 6.5].
We say E is hyperfinite if E can be written as an increasing union of finite

CBER; see [Kec24, Theorem 8.2] for alternate characterizations of hyperfiniteness.
In particular, E0 and all smooth CBER are hyperfinite.

An invariant probability measure for a Borel action of a countable group
Γ on X is a probability Borel measure µ on X such that γ∗µ = µ for all γ ∈ Γ,
where γ∗µ is the push-forward of µ along γ. An invariant probability measure
for a CBER E on X is a probability Borel measure µ on X such that f∗µ = µ for
every Borel bijection f : X → X whose graph is contained in E. If E is the orbit
equivalence relation induced by a Borel action of a countable group Γ, then these two
notions coincide; see [KM04, Proposition 2.1]. A probability Borel measure µ on X
is E-ergodic if µ(A) ∈ {0, 1} for all E-invariant Borel sets A.

If Γ is a countable group and X is standard Borel, the shift action of Γ on XΓ

is given by (γ · y)(δ) = y(γ−1δ) for γ, δ ∈ Γ and y ∈ XΓ. If µ is any probability Borel
measure on X, then the product measure µΓ is an invariant probability measure on
XΓ which concentrates on the free part, i.e., µΓ(Fr(XΓ)) = 1.

We say E is generically ergodic if A is either meagre or comeagre for all
E-invariant Borel sets A. For example, E0 is generically ergodic, as are the orbit
equivalence relations induced by the shift actions of countably infinite groups.

A CBER E on X is compressible if there is a Borel map f : X → X whose graph
is contained in E, and so that f(C) ⫋ C for every E-class C ∈ X/E. By Nadkarni’s
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Theorem, E is compressible iff it does not admit an invariant probability measure
[Nad90; BK96].

2.5 Structures and expansions on CBER
Fix a language L and a class K of L-structures.

Let E be an aperiodic CBER on a standard Borel space X. A (Borel) L-
structure on E is an L-structure A = (X, RA)R∈L with universe X so that (a)
RA ⊆ Xn is Borel for each n-ary R ∈ L, and (b) each RA only relates elements in the
same E-class, i.e.,

RA(x0, . . . , xn−1) =⇒ x0E · · · Exn−1.

Given such a structure A and an E-class C ∈ X/E, we let A↾C denote the restriction
of A to C, which is a countable L-structure. We call A a Borel K-structuring of
E if A↾C ∈ K for every C ∈ X/E.

Consider now L∗ ⊇ L and a class K∗ of L∗-structures. If A∗ is an L∗-structure on
E, the reduct A∗↾L of A is an L-structure on E. We say that A∗ is an expansion of
an L-structure A on E if A∗↾L = A.

Let A be a Borel K-structuring of E. We say A is Borel expandable to K∗

if it admits an expansion which is a Borel K∗-structuring of E; we say E is Borel
expandable for (K, K∗) if this holds for all such A. When E lives on a Polish
space X, we say A is generically expandable to K∗ if its restriction to a comeagre
invariant Borel set is Borel expandable to K∗; we say E is generically expandable
for (K, K∗) if this holds for all such A. If µ is a probability Borel measure on X, we
say A is µ-a.e. expandable to K∗ if its restriction to a µ-conull invariant Borel set
is Borel expandable to K∗; we say (E, µ) is a.e. expandable for (K, K∗) this holds
for all such A.

3 General results
In this section, we assume that all classes of structures are Borel.

3.1 Universal structurings of CBER
We begin by describing an alternate characterization of Borel structures and expan-
sions on CBER which will be useful later; see also [BC24, Definition 3.1].

Let E be an aperiodic CBER on a standard Borel space X. A Borel family
of enumerations of E is a Borel map g : X → XN , where N is some countably
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infinite set, so that gx = g(x) : N → X is a bijection of N with [x]E for all x ∈ X;
such maps always exist by the Lusin–Novikov Theorem (c.f. [Kec95, 18.15]). A map
ρ : E → G from E to a group G is a cocycle if

ρ(y, z)ρ(x, y) = ρ(x, z)

for all xEyEz. If g : X → XN is a Borel enumeration of X, there is an associated
Borel cocycle ρg : E → SN given by ρg(x, y) = g−1

y ◦ gx.
Let L be a language, K be a class of L-structures and g : X → XN be a Borel

enumeration of E. Given an L-structure A on E, one gets a map F = FA
g : X →

ModL(N) given by setting

RF (x)(n1, . . . , nk) ⇐⇒ RA(gx(n1), . . . , gx(nk))

for k-ary R ∈ L and n1, . . . , nk ∈ N . Note that if xEy then

Rρg(x,y)·F (x)(n1, . . . , nk) ⇐⇒ RF (x)(ρg(x, y)−1(n1), . . . , ρg(x, y)−1(nk))
⇐⇒ RA(gx(ρg(x, y)−1(n1)), . . . , gx(ρg(x, y)−1(nk)))
⇐⇒ RA(gy(n1), . . . , gy(nk))
⇐⇒ RF (y)(n1, . . . , nk),

that is, ρg(x, y) · F (x) = F (y). Call such a map ρg-equivariant. Note that gx :
F (x) ∼= A↾[x]E for x ∈ X.

Conversely, given a ρg-equivariant map F : X → ModL(N), one can define a Borel
L-structure A on E by setting

RA(x1, . . . , xk) ⇐⇒ RF (x)(gx(x1)−1, . . . , g−1
x (xk))

for any k-ary R ∈ L and xEx1E . . . Exk. It is easy to verify, using the fact that
ρg(x, y)F (x) = F (y) for xEy, that this definition does not depend on the choice of x
and that gx : F (x) ∼= A↾[x]E for x ∈ X.

We therefore have that the map A 7→ FA
g is a bijective correspondence between

L-structures on E and ρg-equivariant maps F : X → ModL(N). It is easy to see that
A is Borel iff FA

g is Borel, and that A is a K-structuring of E iff the image of FA
g is

contained in K(N), whenever K is a class of L-structures.
We remark that if L ⊆ L∗ are languages and A,A∗ are L, L∗-structures on E,

then A∗ is an expansion of A iff FA
g = π ◦ FA∗

g , where π : ModL∗(N) → ModL(N) is
the reduct. That is, A admits a Borel expansion iff there is a ρg-equivariant Borel lift
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F of FA to K∗(X):
K∗(X)

X K(X)

π

FA

F

Fix now a class of L-structures K. In [CK18, Theorem 4.1, Remark 4.3], a
universal K-structurable CBER lying over E is constructed, which we denote E ⋉g K.
Explicitly, E ⋉g K lives on X × K(N), and is given by

(x, A)(E ⋉g K)(y, B) ⇐⇒ xEy & ρg(x, y) · A = B.

The projection π0 : X × K(N) → X is a class-bijective homomorphism E ⋉g K → E,
along which g can be pulled back to a Borel enumeration g̃ of E ⋉g K. If ρg̃ is the
associated Borel cocycle, then ρg̃ = ρg ◦ (π0 × π0), and it follows that

ρg̃((x, A), (y, B)) · A = ρg(x, y) · A = B.

The canonical K-structure A on E ⋉g K is then the one induced by the projection
X × K(N) → K(N), which we have observed is ρg̃-equivariant. Note that while
E ⋉g K depends only on the cocycle ρg, A depends on g.

The above constructions do not depend on the choice of g, up to canonical Borel
isomorphism. That is, given Borel enumerations g : X → XM , h : X → XN of E, let
τ(x) = τg,h(x) = h−1

x ◦ gx. Then τ : X → NM is Borel and each τ(x) : M → N is a
bijection. Moreover, we have

τ(y) ◦ ρg(x, y) = ρh(x, y) ◦ τ(x)

for xEy (i.e., ρg, ρh are cohomologous, as witnessed by τ). In particular, if A is a Borel
L-structure on E and FA

g , FA
h the corresponding maps, then FA

h (x) = τ(x) · FA
g (x)

for x ∈ X. Additionally, the map (x, A) 7→ (x, τ(x) · A) is a Borel isomorphism
E ⋉g K ∼=B E ⋉h K.

3.2 Expansions on CBER induced by free actions
Fix an expansion problem (K, K∗) and a countably infinite group Γ. We wish to
relate the existence of Γ-equivariant expansions with Borel expansions on CBER
induced by free actions of Γ.

Suppose E = EX
Γ is a CBER induced by a free Borel action of Γ on a standard

Borel space X. This gives rise to a Borel enumeration g : X → XΓ of E, namely
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gx(γ) = γ−1 · x. In this case, ρg(x, γx) = γ ∈ SΓ, so ρg : E → Γ. In particular, we
have that E ⋉g K = E

X×K(Γ)
Γ is the orbit equivalence relation induced by the diagonal

action of Γ on X × K(Γ).
Thus, the characterization of Borel K-structurings of E described in Section 3.1

gives:

Proposition 3.1. Let L be a language, K be a Borel class of L-structures and Γ be
a countably infinite group. Fix a free Borel action of Γ on a standard Borel space X.
There is a canonical bijection A 7→ FA between the set of Borel K-structurings of EX

Γ
and the set of Γ-equivariant Borel maps X → K(Γ), defined by setting

RFA(x)(γ1, . . . , γn) ⇐⇒ RA(γ−1
1 · x, . . . , γ−1

n · x)

for x ∈ X, Borel K-structurings A on EX
Γ , n-ary relation symbols R ∈ L and

γ1, . . . , γn ∈ Γ.

Proposition 3.2. Let (K, K∗) be an expansion problem and Γ be a countably infinite
group. Fix a free Borel action of Γ on a standard Borel space X and a Borel K-
structuring A of EX

Γ , and let f : X → K(Γ) be the corresponding equivariant Borel
map. There is a canonical bijection between Borel expansions A∗ of A and equivariant
Borel maps g : X → K∗(Γ) satisfying π ◦ g = f , where π : K∗(Γ) → K(Γ) is the reduct
from L∗ to L.

Remark 3.3. If X ⊆ Fr(K(Γ)) is invariant and Borel then there is a canonical Borel
K-structuring of EX

Γ corresponding to the inclusion X → K(Γ). More generally, if
Z is a standard Borel space on which Γ acts and X ⊆ Z × K(Γ) is Borel, invariant
and free for the diagonal Γ action on the product, then there is a canonical Borel
K-structuring of EX

Γ corresponding to the projection Z × K(Γ) ⊇ X → K(Γ).

In particular, this gives a weak correspondence between equivariant expansions
on Γ and expansions of CBER induced by free actions of Γ.

Proposition 3.4. Let (K, K∗) be an expansion problem and Γ be a countably infinite
group.

(1) If K(Γ) admits a Borel equivariant expansion, then every CBER induced by a
free Borel action of Γ is Borel expandable.

(2) An invariant Borel set X ⊆ Fr(K(Γ)) admits a Borel equivariant expansion iff
the canonical K-structuring of EX

Γ admits a Borel expansion.
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(3) Suppose there is a free Borel action of Γ on a standard Borel space Z admitting
an invariant measure µ, and so that the canonical K-structure A on Z ×K(Γ) is
λ-a.e. expandable for every Γ-invariant probability Borel measure λ on Z ×K(Γ)
whose push-forward to Z is µ. Then Γ admits random expansions.

Proof. (1) Let h be such an expansion. For any Borel equivariant f : X → K(Γ),
h ◦ f : X → K∗(Γ) is Borel, equivariant, and satisfies π ◦ h ◦ f = f , so this follows by
Proposition 3.2.

(2) This follows immediately from Proposition 3.2.
(3) For any invariant random K-structure ν on Γ, take λ = ν × µ. Then λ is

Γ-invariant, so there is a λ-conull invariant Borel set X ⊆ K(Γ) × Z and an expansion
A∗ of A↾X. Let f : X → K∗(Γ) be the corresponding equivariant map, and let
κ = f∗(λ). Then κ is an invariant random K∗-structure on Γ, and π∗κ = (π ◦ f)∗λ =
(projK(Γ))∗λ = ν.

3.3 Uniform random expansions
Let (K, K∗) be an expansion problem, Γ be a countably infinite group, and µ be
an invariant random K-structure on Γ. In general, it is possible that µ admits an
invariant random expansion to K∗, but K does not admit equivariant expansions to
K∗ µ-a.e. That is, there may be some invariant random expansion ν of µ to K∗, but
no Borel equivariant expansion map f : K(Γ) ⊇ Z → K∗(Γ), defined on a µ-conull
set Z, so that ν = f∗µ (see e.g. Remark 4.10).

On the other hand, we will see that for Examples 2.1, 2.4 and 2.6, every invariant
random K-structure on Γ which admits an invariant random expansion to K∗ admits
such an expansion of the form f∗µ, where f : K(Γ) ⊇ Z → K∗(Γ) is a Borel equivariant
expansion map defined on a µ-conull set Z. Moreover, in these cases, we shall see that
this holds uniformly in µ: there is a single function f that works for all such µ. That
is, there is an invariant Borel set Z ⊆ K(Γ) and Borel equivariant expansion map
f : Z → K∗(Γ) so that µ admits an invariant random expansion to K∗ iff µ(Z) = 1,
in which case f∗µ gives such an expansion.

One can view such a function f as both classifying exactly when invariant random
expansions exist, as well as giving uniformly all possible invariant random expansions.
When such an f exists, one can further characterize exactly when a Borel K-structuring
of a CBER is a.e. expandable, for any CBER induced by a free Borel action of Γ:

Proposition 3.5. Let (K, K∗) be an expansion problem and Γ be a countably infinite
group. Suppose that there is a Borel Γ-invariant set Z ⊆ K(Γ) which admits a
Γ-equivariant expansion to K∗, and such that the following holds: For every invariant
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random K-structure µ on Γ, µ admits an invariant random expansion to K∗ iff
µ(Z) = 1.

Then for any CBER E on X induced by a free Borel action of Γ, any E-invariant
probability Borel measure µ on X and any Borel K-structuring A of E, A is µ-
a.e. expandable to K∗ if and only if FA(x) ∈ Z for µ-almost every x ∈ X, where
FA : X → K(Γ) is the equivariant map from Proposition 3.1.

Proof. If FA(x) ∈ Z for µ-almost every x ∈ X, then by Proposition 3.2, the composi-
tion of FA with the expansion map Z → K∗(Γ) gives a Borel expansion of A to K∗

on an invariant µ-conull set.
Conversely, suppose that Y ⊆ X is an E-invariant Borel µ-conull set and A∗ is

a Borel expansion of A↾Y to K∗. Let π : K∗(Γ) → K(Γ) denote the reduct, and
note that FA = π ◦ FA∗ , so that FA∗

∗ µ is an invariant random expansion of FA
∗ µ. By

assumption, this implies that FA
∗ µ(Z) = 1, i.e., FA(x) ∈ Z for µ-a.e. x ∈ X.

3.4 Invariant random expansions on CBER
We consider now a notion of invariant random structures and random expansions on
CBER. When E is a CBER arising from a free Borel action of Γ with an invariant
measure, this will correspond to a weakening of the hypotheses of Proposition 3.4(3),
and we will show in this case that the existence of random expansions on E corresponds
exactly to the existence of random expansions on Γ. Crucially, this notion of random
expansion will be purely in terms of the CBER with no reference to Γ, allowing us to
compare the existence of random expansion between various groups.

Let (K, K∗) be an expansion problem, fix an aperiodic CBER E on a standard
Borel space X and let g : X → XN be a Borel enumeration of E.

An invariant random K-structuring of E (with respect to g) is an invariant
probability Borel measure for E ⋉g K. If µ is an invariant probability Borel measure
for E, an invariant random K-structuring of (E, µ) (with respect to g) is
an invariant random K-structuring ν of E whose push-forward along the projection
X × K(N) → X is µ. We say an invariant random K∗-structuring κ of E is an
expansion of an invariant random K-structuring ν of E if the push-forward of κ
along the reduct X × K∗(N) → X × K(N) is ν.

If h : X → XM is another Borel enumeration of E and τ = τg,h : X → MN the
induced Borel map described in Section 3.1, we recall that (x, A) 7→ (x, τ(x) · A) is a
Borel isomorphism E ⋉g K ∼=B E ⋉h K. It is easy to see that the following diagram
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commutes, where π denotes the reduct from K∗ to K.

X × K∗(N) X × K(N) X

X × K∗(M) X × K(M) X

(idX ,π)

(idX ,τ)

projX

(idX ,τ) idX

(idX ,π) projX

If µ is an invariant probability Borel measure on E, we say (E, µ) admits random
expansions from K to K∗ if for every invariant random K-structure ν on (E, µ)
there is an invariant random K∗-structure κ on (E, µ) that is an expansion of ν.
We say E admits random expansions from K to K∗ if (E, µ) admits invariant
random expansions from K to K∗ for every invariant probability Borel measure µ
on E. By the prior remarks, these definitions do not depend on the choice of Borel
enumeration of E.

The following key fact relates invariant random expansions between CBER and
groups. Special cases of this have been shown, for example with linearizations in
[Alp22]; we note here that it holds more generally for all expansion problems.

Proposition 3.6. Let (K, K∗) be an expansion problem and Γ be a countably infinite
group. The following are equivalent:

1. Γ admits random expansions from K to K∗;

2. Every CBER E induced by a free Borel action of Γ admits random expansions
from K to K∗;

3. There is a CBER E induced by a free Borel action of Γ and an E-invariant
probability Borel measure µ, such that (E, µ) admits random expansions from
K to K∗.

Proof. (1) =⇒ (2): Let E be a CBER on X induced by a free Borel action of
Γ. By the remarks at the start of Section 3.2, we may assume that E ⋉ K is the
orbit equivalence relation on X × K(Γ) arising from the diagonal Γ action. If ν is an
invariant probability Borel measure on X × K(Γ), then the push-forward of ν along
the projection X × K(Γ) → K(Γ) gives an invariant random K-structure ν ′ on Γ. By
(1), there is an invariant random K∗-structure κ on K∗(Γ) which is an expansion of ν ′.

Let now {κA}A∈K(Γ) be the measure disintegration of κ with respect to ν ′ over
the reduct K∗(Γ) → K(Γ), and {νA × δA}A∈K(Γ) be a measure disintegration of ν
with respect to ν ′ over the projection X × K(Γ) → K(Γ) (see for example [Kec95,
17.35]). Then it is straightforward to check that λ =

∫
(νA ×κA)dν ′(A) is a Γ-invariant

probability Borel measure on X × K∗(Γ) which is an extension of ν.
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(2) =⇒ (3): Consider e.g. the free part of the shift of Γ on 2Γ.
(3) =⇒ (1): Suppose (E, µ) admits random expansions form K to K∗, where E

is induced by a free Borel action of Γ on X preserving the probability Borel measure
µ. Let ν be an invariant random K-structure on Γ, and consider µ × ν on X × K(Γ).
This is Γ-invariant, hence it admits an expansion κ, and the push-forward of κ along
the projection X × K∗(Γ) → K∗(Γ) is an invariant random expansion of ν.

Recall now that two countably infinite groups Γ, Λ are orbit equivalent if there
is a CBER E on a standard Borel space X admitting an invariant probability Borel
measure and free Borel actions of Γ, Λ on X with E = EX

Γ = EX
Λ . A CBER is

said to be measure-hyperfinite if, for every invariant probability Borel measure
µ, it is hyperfinite when restricted to a Borel invariant µ-conull set (see also [Kec24,
Sections 8.5, 9]). For example, all countable infinite amenable groups are orbit
equivalent and their actions generate measure-hyperfinite CBER [Dye59; OW80].

Theorem 3.7. Let (K, K∗) be an expansion problem and Γ, Λ be countably infinite
groups. If Γ, Λ are orbit equivalent, then Γ admits random expansions from K to K∗

iff Λ admits random expansions from K to K∗.
In particular, the following are equivalent:

1. Γ admits random expansions from K to K∗ for all amenable groups Γ;

2. Γ admits random expansions from K to K∗ for some amenable group Γ; and

3. every aperiodic measure-hyperfinite CBER admits random expansions from K
to K∗.

Proof. Let E be a CBER on a standard Borel space X admitting an invariant
probability Borel measure µ, and fix free Borel actions of Γ, Λ on X inducing E.
Suppose Γ admits random expansions from K to K∗. By (1) =⇒ (2) of Proposition 3.6
(E, µ) admits random expansions from K to K∗, and hence by (3) =⇒ (1) of
Proposition 3.6 so does Λ.

By Proposition 3.6, it is clear that (1) ⇐⇒ (2) ⇐= (3). If E is an aperiodic
measure-hyperfinite CBER and µ is an E-invariant probability Borel measure, then
by restricting to a µ-conull set we see that E is hyperfinite, hence generated by a free
Z action. Thus (1) =⇒ (3) by Proposition 3.6.

We note that converse holds as well:

Proposition 3.8. Let Γ, Λ be countably infinite groups and suppose that for every
expansion problem (K, K∗), Γ admits random expansions from K to K∗ iff Λ admits
random expansions from K to K∗. Then Γ, Λ are orbit equivalent.
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Proof. Let K be the class of countable sets (in the empty language), and take K∗ to
be a class of structures so that K∗-structurability of a CBER E corresponds exactly
to E arising from a free Borel action of Γ (see e.g. [CK18, Section 3.1]).

We claim that Γ admits an invariant random K∗-structure. To see this, fix a
free Borel action of Γ on a standard Borel space X preserving a probability Borel
measure µ (e.g. the free part of the shift on 2Γ). By definition, EX

Γ admits a Borel
K∗-structure A∗. By Proposition 3.1 this corresponds to a Γ-equivariant Borel map
FA : X → K∗(Γ), so FA

∗ µ is an invariant random K∗-structure on Γ. As K(Γ) is a
singleton, Γ admits invariant random expansions from K to K∗.

Thus, by our assumption, Λ admits random expansions from K to K∗. Fix a free
Borel action of Λ on a standard Borel space Y preserving a probability Borel measure
ν. By (1) =⇒ (2) of Proposition 3.6 there is an (E ⋉K∗)-invariant probability Borel
measure κ on Y × K∗(Λ). Note that E ⋉ K∗ admits a Borel K∗-structuring, hence
arises from a free Borel action of Γ. Thus the actions of Γ, Λ on Y × K∗(Λ) witness
the orbit equivalence of Γ, Λ.

Remark 3.9. This is really an observation about invariant random structures on
groups: Two countably infinite groups Γ, Λ are orbit equivalent if and only if, for
every class K of structures, there is an invariant random K-structure on Γ exactly
when there is an invariant random K-structure on Λ.

Finally, we remark that random expansions always exist for closed classes of
structures on amenable groups.

Proposition 3.10. Let (K, K∗) be an expansion problem. If K∗ is closed, then Γ
admits random expansions from K to K∗ for every countably infinite amenable group
Γ.

Proof. Let µ be an invariant random K-structure on Γ, and let π : K∗(Γ) → K(Γ)
denote the reduct. Then π∗ : P (K∗(Γ)) → P (K(Γ)), where P (X) denotes the space of
probability Borel measures on a space X. Note that π∗ is continuous and P (K∗(Γ)) is
compact metrizable [Kec95, 17.22, 17.28], so in particular A = (π∗)−1(µ) ⊆ P (K∗(Γ))
is compact metrizable. By the invariance of µ and the equivariance of π, we see that
A is Γ-invariant. It is also easy to see that it is non-empty: as π is continuous every
fibre is compact, so we may choose in a Borel way some νx ∈ P (π−1(x)) for x ∈ K(Γ)
and let ν =

∫
νxdµ ∈ A (c.f. [Kec95, 28.8]). As Γ is amenable there is a fixed point

in A, which is an invariant random expansion of µ.
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3.5 Generic equivariant expansions
If K is Gδ classes of structures of L-structures and Φ is an isomorphism-invariant
property of L-structures, we say the generic element of K satisfies Φ if for some
countably infinite set X, KΦ(X) = {A ∈ K(X) : Φ(A)} is comeagre in K(X). We
note that this does not depend on the choice of X: If f : X → Y is a bijection, this
induces a homeomorphism K(X) → K(Y ) taking KΦ(X) to KΦ(Y ).

In this section, we show that if K is a Gδ class of structures and the generic
element of K has trivial algebraic closure, then the question of whether K admits
Γ-equivariant expansions to K∗ generically does not depend on the group Γ.

Definition 3.11. Let L be a language and A be a countable L-structure with
universe X. We say A has the weak duplication property (WDP) if, for every
A0 ∈ AgeX(A) and any finite F ⊆ X, there is an embedding of A0 into A whose
image is disjoint from F .

We say that A is definable from equality if for all n-ary R ∈ L and n-tuples
x̄, ȳ in X with the same equality type, RA(x̄) ⇐⇒ RA(ȳ). (The equality type of
x̄ is the set of pairs (i, j) with x̄i = x̄j.)

For F ⊆ X, let AutF (A) denote the group of automorphisms of A that fix F
pointwise, i.e., such that f(x) = x for x ∈ F . We say A has trivial algebraic closure
(TAC) if, for every finite F ⊆ X, the action of AutF (A) on X \ F has no finite
orbits. See e.g. [Hod93, Section 4.2] or [CK18, 50] for alternative characterizations.

Example 3.12. Let K be the class described in one of Examples 2.1 to 2.3, 2.5
and 2.6. The generic element of K has TAC and is not definable from equality. On
the other hand, if K is the class of connected graphs of maximum degree d (c.f.
Examples 2.4 and 2.7) then no element of K has TAC: If G ∈ K and (u, v) is an edge
of G, then the orbit of v under the action of Aut{u}(G) has size at most d.

Theorem 3.13. Let (K, K∗) be an expansion problem. Suppose that K is Gδ and the
generic element of K has TAC and is not definable from equality. Then the following
are equivalent:

1. For every countably infinite group Γ, K admits Γ-equivariant expansions to K∗

generically.

2. There exists a countably infinite group Γ for which K admits Γ-equivariant
expansions to K∗ generically.

In particular, this applies to Examples 2.1 to 2.3, 2.5 and 2.6 by Example 3.12.
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Lemma 3.14. Let A be an L-structure on a countably infinite set X. Then A has
TAC if and only if, for every A0 ∈ AgeX(A) with universe F , every F0 ⊆ F , every
embedding f : F0 → X of A0↾F0 into A and every finite G ⊆ X there is an embedding
g of A0 into A which extends f and such that g(F \ F0) ∩ G = ∅.
Proof. ( =⇒ ) Let A0, F, F0, G be as in the lemma and suppose that A has TAC.
By Fraïssé’s Theorem and [Hod93, Theorem 7.1.8] A is homogeneous, so we may
assume wlog that f is the identity. By Neumann’s Separation Lemma, there is some
g ∈ AutF0(A) such that g(F \ F0) ∩ G = ∅, in which case we may take g↾F .

( ⇐= ) Note first that A is homogeneous, i.e., every isomorphism between finite
substructures of A extends to an automorphism of A. To see this, by [Hod93,
Lemma 7.1.4] it suffices to show that if A0 ∈ AgeX(A) has universe F , F0 ⊆ F
and f : F0 → X is an embedding of A0↾F0 into A, then f can be extended to an
embedding of A0 into A, which follows from our assumption (taking G = ∅).

Let now F be a finite set and x ∈ X \ F in order to show that x has infinite orbit
under AutF (A). Let C ⊆ X be finite and let A0 = A↾(F ∪ {x}). By assumption,
there is an embedding f of A0 into A that is the identity on F and such that f(x) /∈ C.
By homogeneity, this can be extended to an automorphism of A, so that in particular
the orbit of x is not contained in C. As C, x were arbitrary, we conclude that A has
TAC.

In particular, if A has TAC then A is homogeneous and has the WDP (to see the
latter, take F0 = ∅ and G = F in the lemma).
Remark 3.15. If K is a class of structures and X a countably infinite set, the set
of structures in K(X) which have the WDP (resp. are definable from equality, have
TAC) is Gδ (resp. closed, Gδ) in K(X).
Lemma 3.16. Let K be a class of structures with the WDP that are not definable
from equality, and Γ be a countably infinite group. For any A ∈ K(Γ) there is some
B ∈ Fr(K(Γ)) isomorphic to A. If K is Gδ, then Fr(K(Γ)) is a dense Gδ set in
K(Γ).
Proof. Let A ∈ K(Γ) and fix an enumeration {γn}n∈N of Γ. Let R ∈ L be a relation
such that RA is not definable from equality. We will construct an increasing sequence
of finite partial bijections fn : Γ → Γ so that γn is in the domain of f2n and in the
range of f2n+1, and moreover so that for all n there is a tuple x̄ such that x̄, γnx̄ are
contained in the domain of f2n and RA(f2n(x̄) ⇐⇒ ¬RA(f2n(γnx̄)). Assuming this
has been done, we let f = ⋃

n fn and B = f−1(A). Then B ∼= A ∈ K(Γ), and for all
γ ∈ Γ there is some x̄ such that

RB(x̄) ⇐⇒ RA(f(x̄)) ⇐⇒ ¬RA(f(γx̄)) ⇐⇒ ¬RB(γx̄),
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so that γB ̸= B for all γ ∈ Γ.
We construct these maps as follows. Set f−1 = ∅ for convenience. Given f2n,

we let f2n+1 be an arbitrary extension with γn in its range. Suppose now we have
constructed f2n−1 : F → G. Because A has the WDP and RA is not definable from
equality, there are tuples ȳ, z̄ with the same equality type so that RA(ȳ) ⇐⇒ ¬RA(z̄)
and the sets ȳ, z̄, G are pairwise disjoint. Since Γ is infinite, we can find a tuple x̄
with the same equality type as ȳ so that x̄, γnx̄, F are pairwise disjoint. We then
define f2n to extend f2n−1 by sending x̄ 7→ ȳ, γnx̄ 7→ z̄ and, if f2n(γn) has not already
been defined, setting it to any element of Γ not already in the range of f2n.

If K is Gδ, then Fr(K(Γ)) is a Gδ set as the action of Γ is continuous. Moreover, if
A0 ∈ AgeΓ(K) has universe F and A ∈ N(A0), then the same construction starting
instead with the f−1 as the identity on F gives B ∈ N(A0) ∩ Fr(K(Γ)), so the free
part is dense.

Lemma 3.17. Let K be a Gδ class of structures with TAC and Γ be a countably
infinite group. The set of A ∈ K(Γ) with the following extension property is a dense
Gδ set in K(Γ):

(∗) Let A0, A1 ∈ AgeΓ(K) be L′-structures with disjoint universes F, G respectively.
Let F0 ⊆ F and f : (F \ F0) ∪ G → Γ be an injection. If A0↾F0 ⊑ A and
A0, A1 embed into A, then there is some γ ∈ Γ such that the map F0 ∋ x 7→ x,
(F \ F0) ∪ G ∋ x 7→ γf(x) embeds both A0, A1 into A.

Proof. Fix A0, A1, F, G, F0, f as in (∗) and let a : F → Γ, b : G → Γ be injections.
Let U be the set of all A ∈ K(Γ) such that, if A0↾F0 ⊑ A and a, b are embeddings of
A0, A1 into A, then the conclusion of (∗) holds for A. We will show that U is open
and dense. As there are only countably many choices for A0, A1, F, G, F0, f, a, b, the
intersection of all such U is a dense Gδ set whose elements satisfy (∗).

It is clear that U is open. To see that it is dense, fix B0 ∈ AgeΓ(K) and let
A ∈ N(B0). If A0↾F0 ⊈ A or some a, b is not an embedding of A0, A1 into A then
A ∈ U . Otherwise, let B0 have universe H, and assume wlog that F0 ⊆ H. Because
A has TAC and by Lemma 3.14, there is an embedding g0 : F → Γ of A0 into A
extending the identity on F0 so that g0(F \ F0) ∩ H = ∅. By the WDP, there is
an embedding g1 : A1 → A whose image is disjoint from H ∪ g0(F ). Fix γ so that
H ∩ γf((F \ F0) ∪ G) = ∅, and let h : Γ → Γ be a bijection so that the following hold:
h is the identity on H, h(γf(x)) = g0(x) for x ∈ F \ F0 and h(γf(x)) = g1(x) for
x ∈ G. Let B = h−1(A). Then B ∈ N(B0), B ∼= A and B satisfies (∗) as witnessed
by γ, so B ∈ U .

Proof of Theorem 3.13. Clearly (1) =⇒ (2).
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(2) =⇒ (1): As the class K′ of elements of K with TAC that are not definable
from equality is a comeagre Gδ set in K, we may assume wlog that K = K′.

Let Γ, Λ be countably infinite groups and Z ⊆ K(Λ) be a Borel comeagre Λ-
invariant set that admits a Λ-equivariant expansion to K∗.

Let fn ∈ SΛ be a dense sequence of bijections, i.e., a sequence such that for every
finite partial bijection Λ → Λ there is some fn extending it. Since SΛ acts on K(Λ)
by homeomorphisms, we can assume wlog that Z is Gδ and that fn(A) ∈ Z for all
A ∈ Z, n ∈ N. By Lemma 3.16, we may also assume that Z ⊆ Fr(K(Λ)).

Let X = Fr(K(Γ)), which by Lemma 3.16 is a dense Gδ set in K(Γ), and let
E = EX

Γ . Let A be the canonical K-structuring of E. We will show that there is a
Borel expansion of A restricted to a comeagre Γ-invariant set Y ⊆ X, and hence by
Proposition 3.4(2) there is a Borel Γ-equivariant expansion map Y → K∗(Γ). As Γ
was arbitrary, this proves (1).

Our proof strategy is as follows: We find a Borel Γ-invariant comeagre set Y ⊆ X
and a free Λ-action on Y so that EY

Λ = EY
Γ . By Proposition 3.1 applied to A↾Y , this

gives a Λ-equivariant Borel map F : Y → K(Λ). We will ensure that the image of F
is contained in Z. By Proposition 3.2, this implies the existence of a Borel expansion
of A↾Y , completing the proof.

Below, we let ∀∗ denote the category quantifier: If W is a topological space and
A ⊆ W is Baire-measurable, ∀∗wA(x) means that A is comeagre (see [Kec95, 8.J]).

Let G denote the intersection graph of E. That is, the vertices of G are finite
subsets of X which are contained in a single E-class, and

aGb ⇐⇒ a ̸= b & (a ∩ b ̸= ∅).

By the proof of [KM04, Lemma 7.3], we may fix a countable Borel colouring c of G.
Let (Rn, γn, δ̄n) be a sequence of triples so that (1) the tuples in {δ̄n, γnδ̄n : n ∈ N}

are pairwise disjoint, (2) for every n, Rn ∈ L, and if Rn has arity k then δ̄ ∈ Γk, and
(3) for every R ∈ L of arity k and every equality type of tuples of length k, there are
infinitely many n with Rn = R such that δ̄n has this equality type. Let

On = {A ∈ X : RA
n (δ̄n) & ¬RA

n (γnδ̄n)}

and Bn+1 = On \ ⋃i<n Oi, n ∈ N. We also set B0 = X \ ⋃n On.
Claim 3.18. Suppose A ∈ K(Γ) satisfies (∗) from Lemma 3.17. Then |Γ·A∩Bn| = ∞
for infinitely many n.

Proof. Let N ∈ N be arbitrary. We may find some n ≥ N so that RA
n is not definable

from equality, and there are tuples x̄, ȳ with the same equality type as δ̄n so that
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RA
n (x̄) & ¬RA

n (ȳ). By the WDP, we may assume x̄, ȳ are disjoint. For i < n, find x̄i

with the same equality type as δ̄i which are disjoint from each other and from x̄, ȳ.
By (∗), there is some γ so that RA

n (γδ̄n), ¬RA
n (γγnδ̄n) and for i < n, if RA

i (x̄i) then
RA

i (γγiδ̄i) and otherwise ¬RA(γδ̄i). It follows that γ−1A ∈ Bn. ◁

For α ∈ NN, we define an equivalence relation Eα on X as follows: We set Eα
0 to

be equality. Given Eα
n , we set xEα

n+1y if either xEα
n y or x��Eα

n y, c([x]Eα
n

∪ [y]Eα
n
) = α(n),

and x, y ∈ ⋃
i<n Bi. We then set Eα = ⋃

n Eα
n .

Note that if [x]Eα
n

is not a singleton for some α, n, then x ∈ ⋃
i<n Bi. We note also

that we may analogously construct Es
i for s ∈ N<N, i ≤ |s|, and that Eα

i = Es
i for all

such s, i and α ⊇ s. We set Es = Es
|s|.

Claim 3.19. ∀x ∈ X∀∗α([x]E = [x]Eα).

Proof. Fix x ∈ X and let yEx. We show that the set of α with y ∈ [x]Eα is open
and dense. It is clearly open, as if yEαx then yEα

n x for some n. To see it is dense,
fix s ∈ Nn. We may assume wlog that x, y ∈ ⋃

i<n Bi. But then any α ⊇ s with
α(n) = c([x]Es ∪ [y]Es) satisfies yEαx. As there are only countably many yEx, the
set of all α for which [x]E = [x]Eα is dense Gδ. ◁

Let now L0 = (fλ)λ∈Λ, where each fλ is a binary relation, and let Λ = (Λ, fΛ
λ )λ∈Λ

be the L0-structure where fΛ
λ (δ) = λδ is interpreted as (the graph of) multiplication

on the left by λ.
Let α, β ∈ NN. We define an L0-structure Λα,β on X as follows. We will define an

increasing sequence of structures Λα,β
n on Eα

n and then take Λα,β = ⋃
n Λα,β

n . We will
ensure at every stage n of this process that, if C is an Eα

n -class, then Λα,β
n ↾C will be

isomorphic to a substructure of Λ.
Fix a Borel linear order < on X and an enumeration of Λ. We define Λα,β

0 by
setting f

Λα,β
0

id (x) = x for all x ∈ X, and leaving the other relations undefined. Suppose
now that we have defined Λα,β

n , in order to define Λα,β
n+1. Let C be an Eα

n+1-class. If
C is an Eα

n -class, then we define Λα,β
n+1 to be equal to Λα,β

n on C. Otherwise, C is
the union of two Eα

n -classes C0, C1. Order them so that the <-least element of C0
is <-below the <-least element of C1. For each Ci, as Λα,β

n ↾Ci is isomorphic to a
substructure of Λ, there is a unique embedding fi : Ci → Fi ⊆ Λ taking the <-least
element of Ci to the identity in Λ. We then take λ to be the β(n)-th element of Λ, in
our fixed enumeration, satisfying F0 ∩ F1 · λ = ∅. We define now Λα,β

n+1↾C to be the
pullback of Λ↾(F0 ∪ F1 · λ) via the injection (f0 ∪ f1 · λ) : (C0 ∪ C1) → (F0 ∪ F1 · λ),
where f1 · λ denotes the map x 7→ f1(x) · λ. (Note that we are multiplying F1, f1 by
λ on the right. This is because Λ is defined in terms of multiplication on the left,
and this commutes with multiplication on the right.)
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As with the Eα, we may define Λs,t
k for s, t ∈ Nn and k ≤ n, and we let Λs,t = Λs,t

n .
Note that Λα,β

n = Λα↾n,β↾n for all α, β.
Claim 3.20. ∀∗x ∈ X∀∗α, β(Λα,β↾[x]Eα

∼= Λ).

Proof. Fix x ∈ X satisfying (∗) of Lemma 3.17. Note that by construction, Λα,β↾[x]Eα

embeds into Λ for all α, β, and hence there is a unique embedding fα,β : Λα,β↾[x]Eα →
Λ taking x to the identity. Thus it suffices to show that the set of all α, β for which
fα,β is surjective is a dense Gδ set. To see this, fix λ ∈ Λ. We will show that the set
of all α, β so that λ ∈ fα,β([x]Eα) is a dense open set. As there are only countably
many such λ, this completes the proof.

Note that we may define similarly f s,t : [x]Es → Λ for s, t ∈ Nn. Then fα,β =⋃
n fα↾n,β↾n, so it is clear that the set of α, β with λ in its image is an open set. To see

that it is dense, fix s, t ∈ Nn and consider f s,t. If λ is in the image of f s,t then any
α, β extending s, t satisfies that λ is in the image of fα,β. So suppose otherwise. By
Claim 3.18, there is some yEx so that [y]Es is a singleton. It is easy to see that if u is
an extension of s whose new values are all c([x]Es ∪{y}), then for sufficiently long u we
have yEux. Pick such a u of minimal length, so that at stage |u| of the construction
of Eu we merge [x]Es with {y}. Let C0, C1 denote these two sets, ordered as in the
construction of Λα,β, and let fi : Ci → Fi ⊆ Λ be the corresponding embeddings.

If v is any extension of t of length |u|, m = v(|u| − 1) and λm is the m-th element
of Λ such that F0 ∩ F1 · λm = ∅, then Λu,v↾C ∼= Λ↾(F0 ∪ F1 · λm) via the map
f = f0 ∪ f1 · λm. In particular, if x ∈ C0 and f0(x) = δ, then fu,v = f · δ−1. On the
other hand, if x ∈ C1 and f1(x) = δ, then fu,v = f · λ−1

m δ−1. We will show that we
can choose m so that λ = fu,v(y), and hence such that λ is in the image of fα,β for
all α, β extending u, v. As s, t were arbitrary, the set of all such α, β is dense and we
are done.

Consider now two cases. If x ∈ C0 and f0(x) = δ, then by assumption λδ /∈ F0.
Since C1 is a singleton, F1 contains only the identity. Pick m so that λm = λδ.
For such an m we have fu,v(y) = f1(y)λmδ−1 = λδδ−1 = λ. On the other hand,
if x ∈ C1 and f1(x) = δ, then by assumption λδ /∈ F1. In this case again F0
contains only the identity. Pick m with λm = δ−1λ−1. For such an m we have
fu,v(y) = f0(y)λ−1

m δ−1 = λδδ−1 = λ. ◁

For all α, β, let Xα,β ⊆ X denote the set of all x for which [x]Eα = [x]E and
Λα,β↾[x]E ∼= Λ. There is a free Borel action of Λ on this set, namely the action where
λ · x = fΛα,β

λ (x). By Proposition 3.1, the structure A on E↾Xα,β = EXα,β

Λ gives rise
to a Λ-equivariant Borel map F α,β : Xα,β → K(Λ).
Claim 3.21. ∀∗x ∈ X∀∗α, β(x ∈ Xα,β =⇒ F α,β(x) ∈ Z).

27



Proof. Fix any A ∈ X that is isomorphic to an element of Z and satisfies (∗) of
Lemma 3.17. Note that the set of all such A is comeagre (for the first condition, note
that any bijection Λ → Γ gives a homeomorphism K(Λ) → K(Γ) and consider the
image of Z). If A ∈ Xα,β, let Bα,β = F α,β(A). We will show that the set of all α, β
for which A ∈ Xα,β =⇒ Bα,β ∈ Z is a dense Gδ set.

Fix s, t ∈ Nn and let Cs,t = [A]Es . Let f s,t : Cs,t → Is,t ⊆ Λ be the unique
embedding of Λs,t↾Cs,t into Λ which takes A to the identity (note that this f s,t

is the same as the one described in the proof of the previous claim). Let also
Ds,t = {γ : γ−1A ∈ Cs,t}, let gs,t : Ds,t → Cs,t be the map γ 7→ γ−1A and let
hs,t = f s,t ◦ gs,t. Let Bs,t = hs,t(A↾Ds,t). It is easy to see, by Proposition 3.1, that
Bs,t ⊑ Bα,β whenever α ⊇ s, β ⊇ t and A ∈ Xα,β.

Let now Un be a sequence of dense open sets in K(Λ) so that Z = ⋂
n Un. We will

show that for all N , the set of α, β so that A ∈ Xα,β =⇒ Bα,β ∈ UN is dense and
open. Since UN is open,

A ∈ Xα,β =⇒ [Bα,β ∈ UN ⇐⇒ ∃L′ ⊆ L∃n(N(Bα↾n,β↾n↾L′) ⊆ UN)].

Thus the set of all such α, β is exactly the set of α, β satisfying

∃L′ ⊆ L∃n(N(Bα↾n,β↾n↾L′) ⊆ UN),

which is clearly open, so it remains to show that it is dense. That is, we need to show
that for all s, t, there are u, v extending s, t so that N(Bu,v↾L′) ⊆ UN for some finite
L′ ⊆ L.

Fix s, t ∈ Nn. By assumption, there is some A′ ∈ Z that is isomorphic to A. As
Z is closed under the functions fn described at the start of the proof, we may assume
that Bs,t ⊑ A′. Since A′ ∈ Z ⊆ UN , there is some L′-structure B0 ∈ AgeΛ(K)
so that A′ ∈ N(B0) ⊆ UN ∩ N(Bs,t↾L′). Let F be the universe of B0, so that
B0 = (A′↾L′)↾F and wlog F ⊇ Is,t. We will show that there are u, v extending s, t
so that Bu,v↾L′ = B0, which would complete the proof.

We will show how to do this assuming that F = Is,t ⊔ {λ}. By repeating this
argument recursively we can handle all finite F .

By the proof of Claim 3.18, there is some m > n, a finite structure A0 ∈ AgeΓ(A)
and an injection f from the universe of A0 to Γ \ {1Γ} so that if x 7→ γf(x) is an
embedding of A0 into A, then γ−1A ∈ Bm. It is clear from the proof that we can
also assume that the universe of A0 is disjoint from Ds,t. Now B0 embeds into A,
as it embeds into A′ ∼= A, so by (∗) there is some γ so that (a) the map x 7→ γf(x)
is an embedding of A0 into A and (b) the map (hs,t)−1 ∪ {(λ, γ)} is an embedding
F → Γ of B0 into A.
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By (a) and our choice of A0, γ−1A ∈ Bm so the Es-class of γ−1A is a singleton.
Extend s to a sequence u of length m + 1 by setting the new values to be c([A]Es ∪
{γ−1A}). Thus [A]Eu

m
= [A]Es and [A]Eu = [A]Es ∪ {γ−1A}. By the proof of the

previous claim, there is an extension v of t of length m + 1 so that fu,v(γ−1A) = λ.
We claim now that Bu,v↾L′ = B0. To see this, note that Du,v = Ds,t ∪ {γ},

Iu,v = Is,t ∪ {λ} = F and hu,v = (hs,t ∪ {(γ, λ)}). Now Bu,v = hu,v(A↾Du,v), so this
follows immediately from (b). ◁

By the Kuratowski–Ulam Theorem [Kec95, 8.41] and the claims above, we may fix
some α, β so that Xα,β is comeagre and x ∈ Xα,β =⇒ F α,β(x) ∈ Z for the generic
x ∈ X. In particular, there is a comeagre Γ-invariant Borel set Y ⊆ Xα,β such that
F α,β(Y ) ⊆ Z, which proves (1) by the remarks at the start of the proof.

3.6 Enforcing smoothness
Let (K, K∗) be an expansion problem. We are broadly interested in relating the class
of Borel expandable CBER with natural classes of CBER such as being smooth or
compressible. In this section, we give some sufficient conditions for an expansion
problem (K, K∗) to be Borel expandable for exactly the class of smooth CBER.

Proposition 3.22. Let (K, K∗) be an expansion problem. If there is a Borel expansion
map f : K(N) → K∗(N), then every smooth aperiodic CBER is Borel expandable for
(K, K∗).

Note that we do not require f to satisfy any additional properties (such as
equivariance).

Proof. Let E be a smooth aperiodic CBER on X. Since E is smooth, we can identify
every E-class with N in a Borel way, i.e., there is a Borel enumeration g : X → XN

so that if xEy then g(x) = g(y) (for example take any Borel enumeration h of E and
a selector s for E and let g = h ◦ s). If F : X → K(N) is Borel and E-invariant, then
composing this with f gives a Borel E-invariant map F ∗ = f ◦ F : X → K∗(N) so
that F ∗(x) is an expansion of F (x) for all x. By the correspondence described in
Section 3.1, it follows that E is Borel expandable for (K, K∗).

Remark 3.23. In many cases of interest (including all of the examples in Section 2.2),
a Borel expansion map K(N) → K∗(N) can easily be shown to exist, for example by
recursively constructing an expansion for a given A ∈ K(N), or via an application
of the Compactness Theorem (see e.g. [Kec95, 28.8]). Note that such constructions
depend crucially on the given enumeration of the universe of A, and hence are not in
general equivariant.
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Definition 3.24. Let (K, K∗) be an expansion problem and E be a class of aperiodic
CBER. We say (K, K∗) enforces E if an aperiodic CBER E belongs to E whenever
E is K-structurable and Borel expandable for (K, K∗).

When E is the class of aperiodic smooth CBER we say that such (K, K∗) enforces
smoothness.
Proposition 3.25. Let (K, K∗) be an expansion problem. If some hyperfinite, com-
pressible, aperiodic CBER is not Borel expandable for (K, K∗), then (K, K∗) enforces
smoothness. In particular, this holds if some aperiodic CBER is not generically
expandable for (K, K∗).
Proof. Let E be a hyperfinite, compressible, aperiodic CBER and let F be any
non-smooth aperiodic CBER. By the Glimm-Effros Dichotomy and compressibility
we have E ⊑i

B F (c.f. [DJK94]). It is now easy to see that if F is Borel expandable
then so is E, hence if E is not Borel expandable then neither is F . The second part
follows from the first by [KM04, Theorem 12.1, Corollary 13.3].
Corollary 3.26. Let (K, K∗) be an expansion problem. Suppose K is Gδ and there is
a countably infinite group Γ with Fr(K(Γ)) ̸= ∅ so that there is no Borel equivariant
expansion map X → K∗(Γ) for any comeagre invariant Borel set X ⊆ Fr(K(Γ)).
Then (K, K∗) enforces smoothness.
Proof. Let A be the canonical Borel K-structuring of E = E

F r(K(Γ))
Γ . By our as-

sumption on Γ and Proposition 3.4(2), A does not admit a Borel expansion when
restricted to any comeagre E-invariant Borel set, and in particular E is not generically
expandable. The conclusion follows by Proposition 3.25.
Remark 3.27. By Theorem 3.13, if the generic element of K has TAC and not
definable from equality then the hypotheses of Corollary 3.26 hold for some group Γ
iff they hold for all groups Γ.

We note the following weak converse:
Proposition 3.28. Let (K, K∗) be an expansion problem. If some non-smooth CBER
admits a Borel K-structuring and K admits a Borel Γ-equivariant expansion to K∗

for some countably infinite group Γ then (K, K∗) does not enforce smoothness.
Proof. Let E be a hyperfinite compressible CBER. If some non-smooth CBER
admits a Borel K-structuring, then so does E (as E invariantly embeds into any
non-smooth CBER). Now consider the orbit equivalence relation E of the shift
of Γ on 2Γ. This action is generically ergodic, hence by [KM04, Theorem 12.1,
Theorem 13.3] it is hyperfinite, compressible and non-smooth on an invariant dense
Gδ set Y ⊆ Fr(2Γ). Thus EY

Γ admits a Borel K-structuring, and by Proposition 3.4(1)
it is Borel expandable, so (K, K∗) does not enforce smoothness.
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4 Examples
In this section, we will consider in detail definable expansion problems for Examples 2.1
to 2.8. We summarize what is known for these problems in Table 1.
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Expansions on CBER

Borel
expandable

Generically
expandable

Expandable
a.e.

Bijections Smooth1 All Classified
Ramsey’s Theorem Smooth [GX24] ? (CE) ? (CE)
Linearizations Smooth ? (CE) ? (CE)
Vertex colouring All1 All1 All1
Spanning trees ?3 All ?3

Z-lines Smooth ? (CE) Classified
Vizing’s Theorem Smooth5 ? (PP6) All [GP20]
Matchings Smooth [CJMST20] ? (CE7, PP8) ? (CE7, PP8)

Equivariant expansions on groups

Borel
expansions

Generic
expansions

Expansions
a.e.

Random
expansions

Bijections None1 All Classified Classified
Ramsey’s Theorem None None ? (CEΓ) ? (CEΓ)
Linearizations None None ? (CEΓ) Amen. [Alp22]
Vertex colouring All1,2 All1 Classified1 All1
Spanning trees ?4 All ?4 ?4

Z-lines None None Classified Classified
Vizing’s Theorem None ? (PP6) All2 [GP20] All [GP20]
Matchings None [CJMST20] All9 ? (CEΓ

7, PP8) ? (CEΓ
7, PP8)

Classified: In the sense of Section 3.3 and Proposition 3.5.
CE: There are counterexamples coming from free continuous actions of Γ, for all Γ.
CEΓ There are counterexamples for all countably infinite groups Γ.
PP: There are partial positive results (see the corresponding section for details and references).

1 Essentially [KST99].
2 On the free part Fr(K(Γ)).
3 This lies somewhere between hyperfinite and treeable.
4 This lies somewhere between amenable and treeable.
5 Smooth for d ≥ 3 [CJMST20], All for d = 2 [KST99].
6 Subexponential growth [BD25] and bipartite [BW23].
7 See [Lac88; CK13; Kun24; BKS22].
8 See [LN11; MU16; CM17; BKS22; BCW24; BPZ24; KL23].
9 All for graphs of bounded degree d > 2 (None for d = 2).

Table 1: A summary of known results for Examples 2.1 to 2.8
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4.1 Bijections
Fix K, K∗ as in Example 2.1, that is,

K = {(X, R, S) | R, S ⊆ X & X, R, S are all countably infinite},

K∗ = {(X, R, S, T ) | (X, R, S) ∈ K & T is the graph of a bijection R → S}.

Proposition 4.1 (Essentially [KST99]). (K, K∗) enforces smoothness, and (E, µ) is
not a.e. expandable for any CBER E and any E-invariant probability Borel measure
µ.

Proof. Let E be a non-smooth aperiodic CBER. By the Glimm–Effros Dichotomy,
E0 ⊑B E. By [KST99, Theorem 1.1] E0 is not Borel expandable, and it follows that
E is not Borel expandable either. If µ is an E-invariant probability Borel measure,
then (E, µ) is not a.e. expandable by the same argument as in [KST99, Section 1] for
the shift on 2Z.

More generally, if µ is an ergodic invariant probability Borel measure for a CBER
E on a standard Borel space X and A, B ⊆ X are Borel, then µ(A) = µ(B) iff
A = (X, A, B) admits a Borel expansion µ-a.e. (see e.g. [KM04, Lemma 7.10]). A
similar proof gives a characterization of the invariant random K-structures that admit
invariant random expansions.

Proposition 4.2. Let Γ be a countably infinite group. There is a Borel Γ-invariant
set X ⊆ K(Γ) and a Borel equivariant expansion map f : X → K∗(Γ) such that, for
all invariant random K-structures µ on Γ, µ admits a random expansion to K∗ if and
only if µ(X) = 1, in which case f∗µ gives such an expansion.

Moreover, let A = (Γ, A, B) ∼ µ for an invariant random K-structure µ on Γ.
If µ admits an invariant random expansion then P[1Γ ∈ A] = P[1Γ ∈ B], and the
converse holds when µ is ergodic.

In particular, if E is a CBER on Z induced by a free Borel action of Γ, µ is an
E-invariant probability Borel measure and A is a Borel K-structuring of E, then A is
µ-a.e. expandable to K∗ iff FA(z) ∈ X for µ-a.e. z ∈ Z.

Proof. The “in particular” part follows immediately from Proposition 3.5.
Let Γ = {γn} be an enumeration of Γ. For A, B ⊆ Γ, define sets XA,B

n recursively
by

XA,B
n =

(
A \

⋃
m<n

XA,B
m

)
∩
(

B \
⋃

m<n

XA,B
m · γm

)
· γ−1

n .

The collections {XA,B
n }, {XA,B

n ·γn} consist of pairwise disjoint sets, and the map taking
γ ∈ XA,B

n to ϕA,B(γ) = γ · γn is a bijection from ⋃
n XA,B

n ⊆ A to ⋃n XA,B
n · γn ⊆ B.
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It is easy to see by induction that Xγ·A,γ·B
n = γ · XA,B

n for γ ∈ Γ, so the map
(A, B) 7→ ϕA,B is Γ-equivariant. Additionally, either dom(ϕA,B) = A or ran(ϕA,B) =
B: If γ ∈ A \ dom(ϕA,B), γ′ ∈ B \ ran(ϕA,B) and γn = γ−1γ′ then γ ∈ XA,B

n , a
contradiction.

We let X ⊆ K(Γ) be the set of all A = (Γ, A, B) such that ϕA,B is a bijection
A → B. It is clear that X is invariant and Borel, and that A 7→ (A, ϕA,B) defines a
Borel equivariant expansion f : X → K∗(Γ).

Now let µ be an invariant random K-structure on Γ. If µ(X) = 1 then f∗µ is an
invariant random expansion of µ. If ν is an invariant random expansion of µ and
(Γ, A, B, T ) ∼ ν then

P[1Γ ∈ A] = P[∃γ((1Γ, γ) ∈ T )] =
∑

γ

P[(1Γ, γ) ∈ T ] =
∑

γ

P[(γ−1, 1Γ) ∈ T ]

= P[∃γ((γ, 1Γ) ∈ T )] = P[1Γ ∈ B],
(1)

and since ν is a random expansion of µ we have that P[1Γ ∈ A] = P[1Γ ∈ B] for
(Γ, A, B) ∼ µ.

Suppose now µ is ergodic and P[1Γ ∈ A] = P[1Γ ∈ B] for (Γ, A, B) ∼ µ. As in (1),
we find that P[1Γ ∈ dom(ϕA,B)] = P[1Γ ∈ ran(ϕA,B)]. If P[A = dom(ϕA,B)] = 1 then

P[1Γ ∈ B] = P[1Γ ∈ A] = P[1Γ ∈ dom(ϕA,B)] = P[1Γ ∈ ran(ϕA,B)],

and it follows that P[B = ran(ϕA,B)] = 1. Similarly, if P[B = ran(ϕA,B)] = 1 then
P[A = dom(ϕA,B)] = 1. By ergodicity, one of these must hold, and so

P[A = dom(ϕA,B)] = P[B = ran(ϕA,B)] = 1

and hence µ(X) = 1.
It remains to show that if µ admits an invariant random expansion then µ(X) = 1,

and for this it suffices to prove that if ν is an invariant random K∗-structure on Γ and
(Γ, A, B, T ) ∼ ν then P[(A, B) ∈ X] = 1. By considering an ergodic decomposition of
K∗(Γ) (cf. [Kec24, Theorem 5.12]) we may assume ν is ergodic, in which case this
follows by the same argument as in the previous paragraph.

It is not hard to verify that the set X constructed in the proof of Proposition 4.2
is a dense Gδ set in K(Γ), so that the canonical K-structuring of E

F r(K(Γ))
Γ admits

a Borel expansion on a comeagre invariant Borel set. More generally, we have the
following:

Proposition 4.3. Every aperiodic CBER is generically expandable. In particular, K
admits Γ-equivariant expansions to K∗ generically for every countably infinite group
Γ.
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Proof. The second part follows from the first by Proposition 3.4. In order to prove
the first part, let E be an aperiodic CBER on a Polish space X and let R, S ⊆ X be
Borel sets that have infinite intersection with every E-class. Let

xFy ⇐⇒ xEy & (x ∈ R ⇐⇒ y ∈ R) & (x ∈ S ⇐⇒ y ∈ S).

By (the proof of) [KM04, Corollary 13.3], there is a comeagre E-invariant Borel set
for which the aperiodic part of F ↾C is compressible. As the finite part A of F ↾C is
smooth, and hence so is E↾[A]E, it suffices to prove the following:
Claim 4.4. Suppose F is compressible. Then there is a Borel bijection R → S whose
graph is contained in E.

Proof. We note first that we may assume that R \ S, S \ R have infinite intersection
with every E-class. Indeed, E is smooth on the set of points for which this is false,
and one can easily construct expansions on smooth CBER. By taking our bijection
to be the identity on R ∩ S, we may therefore assume that R, S are disjoint.

Fix a Borel action of a countable group Γ on X so that xEy ⇐⇒ ∃γ ∈ Γ(γx = y).
Fix an enumeration (γn)n∈N of Γ and for x ∈ R let n(x) be the least n such that
γnx ∈ S. Let f(x) = (γn(x), n(x)), so that f : R → S ×N is a Borel embedding of F ↾R
into F ↾S ×IN, where IN is the equivalence relation on N with a single equivalence class.
Since F ↾S is compressible, there is a Borel isomorphism g : F ↾S × IN → F ↾S such
that xFg(x, n) for all x ∈ S, n ∈ N (see e.g. the proof of [DJK94, Proposition 2.5]).
Thus g ◦ f : R → S is a Borel injection whose graph is contained in E. Since F ↾R
is compressible, the proof of [DJK94, Proposition 2.3] applied to g ◦ f gives a Borel
bijection R → S whose graph is also contained in E. ◁

4.2 Ramsey’s Theorem
Fix K, K∗ as in Example 2.2, that is,

K = {(X, R, S) | R, S partition [X]2},

K∗ = {(X, R, S, T ) | (X, R, S) ∈ K & T ⊆ X is infinite
and homogeneous for the partition R, S}.

Proposition 4.5. Let Γ be a countably infinite group. Then K does not admit
Γ-equivariant expansions to K∗ generically.

In particular, (K, K∗) enforces smoothness.
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Proof. The proof of the second part follows from the first by Corollary 3.26.
Suppose now by way of contradiction that f : X → K∗(Γ) was a Borel equivariant

expansion on an invariant dense Gδ set X ⊆ K(Γ). Since an expansion f(x) in this
case is just a choice of a subset of Γ that is homogeneous for the partition given by
x ∈ X, we may view f as an equivariant Borel map X → 2Γ.

Note that the generic element of K has TAC and is not definable from equality,
so by Lemma 3.17 we may assume that for any A0 ∈ AgeΓ(K) and any A ∈ X there
is some γ ∈ Γ such that γA0 ⊑ A. By shrinking X further still we may assume that
f is continuous.

Now fix an arbitrary A ∈ X and let T = f(A) ⊆ Γ. Fix γ0 ̸= γ1 ∈ T . By
continuity there is some A0 ∈ AgeΓ(K) so that A0 ⊑ A and γ0, γ1 ∈ f(B) whenever
B ∈ X ∩ N(A0). By equivariance, γγ0, γγ1 ∈ f(B) whenever B ∈ X ∩ N(γA0).

Let now F be the universe of A0, and assume wlog that γ0, γ1 ∈ F . We consider
the case where [T ]2 ⊆ RA; the case where [T ]2 ⊆ SA is handled identically. Fix
γ ∈ Γ so that F ∩ γF = ∅, and let A1 = (F ∪ γF, RA1 , SA1) ∈ AgeΓ(K) satisfy
A0 ⊑ A1, γA0 ⊑ A1 and {γ0, γγ0} ∈ SA1 . Let δ be such that δA1 ⊑ A. Then
δA0 ⊑ A, δγA0 ⊑ A so δγ0, δγ1, δγγ0 ∈ T . Also, {δγ0, δγ1} ∈ RA and {δγ0, δγγ0} ∈
SA. This contradicts the fact that T is homogeneous for the partition (RA, SA).

Remark 4.6. In [GX24], it is shown that an aperiodic CBER is Borel expandable
for (K, K∗) iff it is smooth, and in particular that (K, K∗) enforces smoothness.
Proposition 4.5, along with Proposition 3.22 and Remark 3.23, give an alternative
proof of this result. Gao and Xiao consider more generally the case of k-colourings of
sets of size n (with the appropriate modifications made to K, K∗) for k, n ≥ 2 [GX24,
Theorem 1.3]; we note that our proof of Proposition 4.5 goes through in this more
general setting as well (where one takes in this case A1 to contain n copies of A0).

In [GX24, Section 3], a variation of the Ramsey extension property is introduced
that enforces (and is actually equivalent to) hyperfiniteness. This extension property
involves choosing in an “almost invariant” way (see [GX24, Definition 3.1]) an
expansion on each E-class, and in particular does not fit into our framework of
expansion problems.

Example 4.7. We showed above that there is a Borel K-structuring of a CBER X
which does not admit an expansion on any comeagre set. Our proof gave a K-structure
(X, R, S) such that, when viewing (X, R) as a graph, each connected component is
isomorphic to the Rado graph.

Below are two more such examples. In the first, (X, R) is acyclic, and in the
second it is bipartite.
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1. By [KST99, Proposition 6.2] there is a Borel acyclic graph G0 ⊆ E0 on 2N

for which every Borel independent set is meagre. Let A = (2N, G0, E0 \ G0),
and note that this is a Borel K-structuring of E0. If X ⊆ 2N is Borel and
E0-invariant and A∗ = (A↾X, T ) is a Borel expansion of A↾X, then T ∩ C is
G0-independent for every E0-class C ⊆ X (as G0 is acyclic), so T is meagre.
Since E0 is generated by the action of a countable group of automorphisms of
2N, X = [T ]E0 is meagre as well. In particular, X is not comeagre, and hence
E0 is not generically expandable.

2. (Kechris) Consider an irrational rotation R on the circle T and let E = ET
R.

Define f : E \ ∆T → 2 by f(x, y) = 1 iff Rn(x) = y for some even n ∈ Z, where
∆T ⊆ T2 denotes the diagonal. Let A = (T, f−1(0), f−1(1)) and note that A is a
Borel K-structuring of E. If X ⊆ T is Borel and E-invariant and A∗ = (A↾X, T )
is a Borel expansion of A↾X. then clearly f takes the value 1 on T . One can
easily extend T to a Borel set T ⊆ A ⊆ X so that R2(A) = A. It follows, as
R2 is generically ergodic, that A, and hence A ∪ R(A) = X, are meagre. In
particular, X is not comeagre, and hence E is not generically expandable.

By Proposition 3.25, these examples give alternative proofs that (K, K∗) enforces
smoothness.

Additionally, both of these examples are not a.e. expandable for the Haar measure,
by a similar ergodicity argument. Proposition 4.8 provides another example that is
not expandable a.e.

Proposition 4.8. Let Γ be a countably infinite group and let µ be the law of the
partition (R, S) of [Γ]2 obtained by including every pair {γ, δ} in R independently
with probability p, 0 < p < 1. Then µ is an invariant random K-structure on Γ that
does not admit an invariant random expansion.

Proof. It is clear that µ is Γ-invariant. Suppose there was an invariant random
expansion ν of µ, and let (R, S, T ) ∼ ν. We may view R as a graph on Γ, which is
almost surely isomorphic to the Rado graph, and view T as either an infinite clique
or an infinite independent set.

For any finite F ⊆ Γ, R↾F is the random graph on F whose edges are included
independently with probability p. The expected size of the largest clique in R↾F is
Θ(log(|F |)), and hence so is the expected size of the largest independent set [Bol01,
Theorem 11.4]. Thus E[|F ∩ T |] ∈ O(log(|F |)). On the other hand,

E[|F ∩ T |] = E[
∑
γ∈F

1γ∈T ] =
∑
γ∈F

P[γ ∈ T ] = |F | · P[1Γ ∈ T ]
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by invariance of ν. Taking |F | → ∞ we find that P[1Γ ∈ T ] = 0, and hence that
T = ∅ almost surely, a contradiction.

4.3 Linearizations
Fix

K = {(X, P ) | P is a partial order on X},

K∗ = {(X, P, L) | (X, P ) ∈ K & P ⊆ L & L is a linear order on X}.

as in Example 2.3.
The expansion problem for invariant random K-structures on groups has been

studied in [GLM24; Alp22]. In particular, Alpeev has shown that

Theorem 4.9 ([Alp22, Corollary 1.1]). A countable group Γ admits random expansions
from K to K∗ if and only if Γ is amenable.

Remark 4.10. Note that even in the case when Γ is amenable and all invariant
random partial orders admit invariant random extensions to linear orders, we cannot
expect to find an equivariant map f : K(Γ) → K∗(Γ) for which an extension is given
by the pushfoward measure along f . This is unlike the case of bijections, or (as we
will see below) for vertex colourings or Z-lines. As a trivial example, note that the
empty partial order is a fixed point in K(Γ), and there is no equivariant expansion of
this partial order when Γ is not left-orderable. We give a more interesting example in
Proposition 4.11.

Proposition 4.11. Let E be an aperiodic CBER. There is a Borel K-structuring of
E that is not µ-a.e. expandable for any E-invariant probability Borel measure µ.

Proof. We may assume that E is not smooth, as no smooth CBER admits an invariant
probability Borel measure.

It suffices to show this for the CBER F = ∆2N × E0. Indeed, suppose A were
a Borel K-structuring of F with this property. By [Kec24, Corollary 8.14], we can
assume that E lives on 2N × 2N and that F ⊆ E. Then every E-invariant measure is
also F -invariant, A is also a Borel K-structuring of E, and if A∗ is an expansion of A
on E (restricted to some invariant Borel set) then its restriction to each F -class is an
expansion of A on F . It follows immediately that A witnesses that this holds for E
as well.

Let F0 be the index 2 subequivalence relation of E0 given by

xF0y ⇐⇒ xE0y & |{i : x(i) ̸= y(i)}| = 0 mod 2.
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We define a Borel K∗-structuring L of F0 as follows: For xF0y, we say xLy if either
x = y or ∑i<n x(i) = 0 mod 2, where n is maximal with x(n) ̸= y(n). This is clearly
reflexive and anti-symmetric. To see that it is transitive, let xLyLz and let l, m, n be
maximal such that x(l) ̸= y(l), y(m) ̸= z(m) and x(n) ̸= z(n). It is clear that l ≠ m.
If l < m, then m = n and ∑

i<m x(i) = ∑
i<m y(i) = 0 mod 2, so xLz. Otherwise

l > m, so l = n and ∑i<l x(i) = 0 mod 2, and so xLz.
Note that in particular, for all xLz there are only finitely many y with xLyLz.

Indeed, if n is maximal with x(n) ̸= z(n), then y must agree with either x or z at all
coordinates m > n. Additionally, it is clear that the restriction of L to every F0-class
is total.

Below, we identify ik for i ∈ 2, k ≤ ∞ with the constant sequence of length k with
value i, and let ⌢ denote concatenation of sequences. (We also abuse notation and
write i for i1.)

We view L as a Borel K-structuring of E0. Suppose that X ⊆ 2N is Borel and
E0-invariant, and that L′ is a Borel expansion of L↾X to K∗. We claim that µ(X) = 0,
where µ is the Haar measure on 2N. To see this, define f : 2N \ {1⌢0∞} → 2N \ {0∞}
by

f(0⌢i⌢x) = 1⌢(1 − i)⌢x, f(1⌢0n⌢1⌢i⌢x) = 0n+1⌢1⌢(1 − i)⌢x.

It is clear that this is a Borel function whose graph is contained in F0. Moreover, it
is not hard to verify that f(x) is the immediate successor of x in L, whenever this
is defined. It follows in particular that L orders every F0-class with order-type Z,
except for [0∞]F0 , [1⌢0∞]F0 , and that f generates L (i.e., xLy ⇐⇒ ∃nfn(x) = y).

Let g : 2N → 2N be the map which flips the first coordinate of every sequence.
Then g is a Borel involution, its graph is contained in E0, and x��F0g(x) for all x. It is
also easy to verify that g is an isomorphism F0 ∼= F0, and that it is order-reversing
for L.

We will use L′ to find a Borel F0-invariant set Y ⊆ X so that every E0↾X-class
contains exactly one F0-class in Y . It is easy to see that µ is F0-invariant and
F0-ergodic, so this implies that Y is either µ-null or µ-conull. It clearly cannot be
µ-conull, so µ(Y ) = 0 and hence µ(X) = 0 as well.

Let now C be an E0-class in X. We show how to choose an F0-class from C in a
uniformly Borel way, and then take Y to be the set of all such choices. If 0∞ ∈ C, then
we choose [0∞]F0 , so suppose this is not the case. Let C0, C1 be the two F0-classes
in C. If some Ci is an initial segment of L′↾C, then we choose Ci. Otherwise, we
claim that for i ∈ 2 there is a unique pair (xi, yi) ∈ Ci so that xiLyi, xiL

′g(xi) and
g(yi)L′yi (see Fig. 1). We then take x to be the lexicographically least element of
{x0, x1, y0, y1} and choose [x]F0 .
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x0 y0

g(y0) g(x0)

g

L↾C0

L↾C1

L′↾C

Figure 1: There is some L↾C0-maximal x0 for which x0L
′g(x0)

We show this for i = 0, the case i = 1 being symmetric. As C1 is not an initial
segment of L′↾C, there are x ∈ C0, y ∈ C1 with xL′y. If yLg(x), then xL′g(x).
Otherwise, g(x)Ly so g(y)Lx (as g is order-reversing) and so g(y)L′y. Thus, by
possibly setting x = g(y), we may assume that xL′g(x). Clearly there is an L-
maximal such x, as we have assumed that C0 is not an initial segment of L′↾C. We
may then take x0 = x, y0 = f(x).

Let now A be the K-structuring of ∆2N × E0 given by pulling back L along
the projection proj2 : 2N × 2N → 2N to the second coordinate (note that this is a
class-bijective map ∆2N × E0 →cb

B E0). We claim that for any (∆2N × E0)-invariant
probability Borel measure µ and any invariant Borel set X ⊆ 2N×2N, if there is a Borel
expansion of A↾X to K∗ then µ(X) = 0. By considering an ergodic decomposition
we may assume that µ is ergodic, in which case it is equal to the Haar measure on
{x} × 2N for some x ∈ 2N, so this follows by the analogous fact for L on E0.

With respect to category, we have the following:

Proposition 4.12. Let Γ be a countably infinite group. Then K does not admit
Γ-equivariant expansions to K∗ generically.

In particular, (K, K∗) enforces smoothness.

Proof. The second part follows from the first by Corollary 3.26.
Suppose by way of contradiction that there was such an expansion f : X → K∗(Γ).

By shrinking X, we may assume that X is Gδ, f is continuous, and by Lemma 3.17
(and the fact that there is a unique generic partial order) that for every A0 ∈ AgeΓ(K)
and every A ∈ X there is some γ ∈ Γ with γA0 ⊑ A.
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δA0

δγ0

δγ1

δγA0

δγγ0

δγγ1

Figure 2: A copy of δA1 in A. The solid arrows are relations in A1,
and the dashed arrows are relations that are forced to exist in L.

Fix an arbitrary A = (Γ, P ) ∈ X and let (Γ, L) = f(A), so that P ⊆ L. Since
P contains a copy of every element of AgeΓ(K) we may in particular find γ0, γ1 ∈ Γ
that are P -incomparable. Suppose wlog that γ0 L γ1. By continuity and equivariance,
there is some A0 ∈ AgeΓ(K) so that A0 ⊑ A and for all γ ∈ Γ and B ∈ X, if
γA0 ⊑ B then γγ0 is less than γγ1 in f(B).

Let now F be the universe of A0 and assume wlog that γ0, γ1 ∈ F . Find some
γ ∈ Γ so that F ∩ γF = ∅, and let A1 = (F ∪ γF, P1) ∈ AgeΓ(K) be a structure
with universe F ∪ γF so that A0 ⊑ A1, γA0 ⊑ A1 and such that γ1 P1 γγ0 and
γγ1 P1 γ0. Let δ be such that δA1 ⊑ A. Then δA0 ⊑ A, δγA0 ⊑ A so δγ0 L δγ1 and
δγγ0 L δγγ1. On the other hand, as δP1 ⊆ P ⊆ L, we have δγ1 L δγγ0 and δγγ1 L δγ0
(see Fig. 2.) It follows that δγ0 L δγ1 L δγ0, a contradiction.

We consider now expansions on CBER.

Proposition 4.13. Let E be a CBER on a standard Borel space X and let P be a
Borel partial order on E. Then the set of Borel subsets Y ⊆ X for which P ↾Y admits
a Borel linearization on E↾Y forms a σ-ideal.

Proof. This class is clearly closed under taking Borel subsets. Suppose now that
Y = ⋃

n Yn and for every n there is a Borel linearization Ln of P ↾Yn on E↾Yn. Let
Zn = ⋃

i<n Yn. We will recursively construct an increasing sequence L̄n of Borel
linearizations of P ↾Zn on E↾Zn and then take L = ⋃

n L̄n.
We begin by setting L̄0 = ∅. Suppose now that we have constructed L̄n, and let

C be an E↾Zn+1-class in order to define L̄n+1↾C. For x ∈ C \ Zn, let

Ix = {y ∈ C ∩ Zn : ∃z ∈ C ∩ Zn(z P x & y L̄n z)}.

Note that Ix is an initial segment of L̄n↾(C ∩ Zn). Now for x, y ∈ C, we say x L̄n+1 y
iff one of the following hold (c.f. Fig. 3):
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L̄n↾(C ∩ Zn))
I = Ix = Iy

Ln+1↾{z ∈ C \ Zn : I = Iz}x y

Figure 3: Extending L̄n to L̄n+1.

1. x, y ∈ Zn and x L̄n y,

2. x ∈ Zn, y /∈ Zn and x ∈ Iy,

3. x /∈ Zn, y ∈ Zn and y /∈ Ix,

4. x, y /∈ Zn and Ix ⫋ Iy, or

5. x, y /∈ Zn, Ix = Iy and x Ln+1 y.

One easily checks that L̄n+1 is a linear order on Zn+1.

In particular, if a partial order P on a CBER E can be decomposed into a
countable union of chains and antichains, then P admits a Borel linearization on E.

Proposition 4.14. Let T be a Borel locally countable directed tree on a standard
Borel space X whose (undirected) connected components form a CBER E, and let P
be the smallest partial order containing T . Then (E, P ) admits a Borel linearization.

Proof. For all xEy, define d(x, y) as follows: Consider the unique (undirected) path
from x to y in T . Weigh each edge in this path by 1 if it occurs in T , and by −1 if its
reverse appears in T , and let d(x, y) be the sum of the edge weights along this path.
Fix a Borel linear order ≤ on X and define x L y if either d(x, y) > 0, or d(x, y) = 0
and x ≤ y. It is straightforward to verify that L is a linear order on E extending P
(for transitivity, note that d(x, z) = d(x, y) + d(y, z) whenever these are defined).

4.4 Vertex colourings
In this section, we fix d ≥ 2 and let

K = {(X, E) | (X, E) is a connected graph of max degree ≤ d},

K∗ = {(X, E, S0, . . . , Sd) | (X, E) ∈ K & S0, . . . , Sd is a vertex colouring of (X, E)}.
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as in Example 2.4.
It was shown in [KST99, Proposition 4.6] that every CBER is Borel expandable

for (K, K∗), and therefore that (K, K∗) admits random expansions by Proposition 3.4.
Their proof essentially establishes the following (see also [BC24, Proposition 4.29]).

Proposition 4.15 (Essentially [KST99]). Let Γ be a countably infinite group. There
is an invariant dense Gδ set Fr(K(Γ)) ⊆ X ⊆ K(Γ) which admits a Borel equivariant
expansion, and such that X is maximal with this property: For any invariant X ⫌ Y ,
there is no equivariant expansion Y → K∗(Γ).

Interpreted in the language of [BC24], X consists of exactly the set of orbits which
satisfy an appropriate separation axiom (as used for example in the proof of [BC24,
Proposition 4.29]).

Proof. We say G ∈ K(Γ) is bad if there are γ, δ ∈ Γ so that δ G γδ and γG = γ, and
G is good otherwise.

If G is bad, then so is every graph in its orbit Γ · G, and in this case there is no
equivariant expansion map Γ · G → K∗(Γ). Indeed, suppose c were such an expansion
map, and view c(γG) as a map Γ → d + 1 that is a colouring of γG for γ ∈ Γ. Fix
some γ, δ so that δ G γδ and γG = G. Then

c(G)(γδ) = c(γG)(γδ) = (γc(G))(γδ) = c(G)(δ)

by equivariance of c, a contradiction.
We take X to be the set of good graphs. Clearly X is a Gδ set containing the

free part of K(Γ). It is also not hard to see that it is dense (for example, the free
part is dense by Lemma 3.16 as the generic element of K satisfies the WDP and is
not definable from equality). It thus remains only to show that X admits a Borel
equivariant expansion.

To see this, it suffices to construct a Borel map f : X → d + 1 so that f(G) ̸=
f(γ−1G) whenever G ∈ X, γ ∈ Γ and 1Γ G γ. Indeed, thinking of f(G) as the colour
of 1Γ in G, this extends uniquely to an equivariant map g : X → (d + 1)Γ sending G
to the colouring

g(G)(γ) = f(γ−1G).
It is clear that g is equivariant and Borel, and g(G) is a proper colouring of G because
if γ G γδ then 1Γ γ−1G δ so

g(G)(γ) = f(γ−1G) ̸= f(δ−1γ−1G) = g(G)(γδ).

Let Hn be an enumeration of AgeΓ(K) and let Xn be the set of all G ∈ X ∩N(Hn)
such that γ−1 G /∈ N(Hn) for all neighbours γ of 1Γ in G. It is clear that at most

43



one of G, γ−1G ∈ Xn whenever G ∈ X and 1Γ G γ. We claim that X = ⋃
n Xn.

Indeed, as G ∈ X is good and has bounded degree, there is some finite F ⊆ Γ so that
G↾F ̸= γ−1G↾F for all neighbours γ of 1Γ in G, in which case G ∈ Xn for n such
that Hn = G↾F .

Let Yn = Xn \ ⋃i<n Xi. The sets Yn partition X and if G ∈ Yn and 1Γ G γ then
γ−1G /∈ Yn. We now define f : X → d+1 recursively on each Yn as follows: supposing
f has already been defined on ⋃

i<n Yi, we define f(G) for G ∈ Yn to be the least
element of d + 1 which is not equal to f(γ−1G) for all neighbours γ of 1Γ in G.

Note that if we replace K with the class of d-regular graphs, then the sets Xn in
the previous proof are clopen, so the construction yields a continuous equivariant
expansion X → K∗(Γ).

One can also consider vertex colourings with fewer colours. This has been studied
extensively in the case of expansions on CBER; we refer the reader to [KM20, Part I]
for a survey of this topic.

4.5 Spanning trees
In this section, consider

K = {(X, E) | (X, E) is a connected graph},

K∗ = {(X, E, T ) | (X, E) ∈ K & (X, T ) is a spanning subtree of (X, E)},

as in Example 2.5.
We say a CBER E is treeable if there is a Borel K′-structuring of E, where K′ is

the class of connected trees. Let T denote the class of treeable CBER, and say an
expansion problem enforces treeability if it enforces T .

A countably infinite group Γ is antitreeable if for every free Borel action of Γ
on a standard Borel space X admitting an invariant probability Borel measure, the
CBER EX

Γ is not treeable (c.f. [Kec24, 115]).

Proposition 4.16. Let E be a CBER. If E is hyperfinite then it is Borel expandable
for (K, K∗), and if it is Borel expandable for (K, K∗) then it is treeable.

In particular,

1. (K, K∗) enforces treeability;

2. K admits Γ-equivariant expansions to K∗ generically for all countably infinite
groups Γ;

3. Γ admits random expansions from K to K∗ for all amenable groups Γ; and
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4. Γ does not admit random expansions from K to K∗ for all antitreeable groups Γ.

Proof. It is clear that if E is Borel expandable for (K, K∗) then it is treeable (consider
the complete graph on each E-class), and in particular that (1) holds.

To see that hyperfinite CBER are Borel expandable for K, K∗, let E be a hyperfinite
CBER and A be a Borel K-structuring of E. Write E = ⋃

n En for an increasing
union of finite CBER. We recursively construct an increasing sequence of Borel sets
A∗

n so that A∗
n ⊆ En and for every En-class C, A∗

n↾C is a spanning subforest of A↾C.
We describe the construction of A∗

n+1, given A∗
n.

Let C be an En+1-class, G = A↾C, T = A∗
n↾C. Then T ⊆ G is a forest of trees,

so we can easily find a spanning forest T ⊆ T ′ ⊆ G. We set A∗
n+1↾C = T ′. As every

En+1-class is finite, it is clear that this can be done in a uniformly Borel way.
It follows that Fr(K(Z)) admits an equivariant random expansion to K∗, and

by Theorem 3.13 this holds for all countably infinite groups Γ. (3) follows by
Proposition 3.4(3), as every CBER generated by a Borel action of an amenable group
is measure-hyperfinite, and (4) is an immediate consequence of Proposition 3.6.

Thus the class of CBER that are Borel expandable for (K, K∗) lies somewhere
between the hyperfinite and the treeable CBER.

Problem 4.17. Is every treeable CBER expandable for (K, K∗)? Does (K, K∗)
enforce hyperfiniteness?

4.6 Z-lines
Let

K = {(X, L) | (X, L) is a linear order without endpoints},

K∗ = {(X, L, Z) | (X, L) ∈ K & Z ⊆ X & (Z, L↾Z) ∼= (Z, <)},

as in Example 2.6.

Proposition 4.18. Let Γ be a countably infinite group. Then K does not admit
Γ-equivariant expansions to K∗ generically.

In particular, (K, K∗) enforces smoothness.

Proof. The second part follows from the first and Corollary 3.26.
For A0 ∈ AgeΓ(K) and A ∈ K(Γ), let C(A0, A) = {γ : γA0 ⊑ A}. We say A

contains A0 densely often if A↾C(A0, A) is a dense linear order with at least two
points.

45



We claim that the generic element of K(Γ) contains every A0 ∈ AgeΓ(K) densely
often. As there are only countably many such A0, it suffices to show this for some
A0. It is easy to see that the set of all A for which C(A0, A) contains at least two
points is open and dense, so we show that the set of A for which A↾C(A0, A) is
dense is a dense Gδ set.

To see this, we show that for any fixed γ0, γ1 ∈ Γ, the set of A satisfying

γ0, γ1 ∈ C(A0, A) & γ0 LA γ1 =⇒ ∃δ(δ ∈ C(A0, A) & γ0 LA δ LA γ1)

is dense and open. This set is clearly open. To see that it is dense, fix B0 ∈ AgeΓ(K)
and let A ∈ N(B0). If γi /∈ C(A0, A) for some i ∈ 2 or γ1 LA γ0, we are done.
Otherwise, we may assume that γ0, γ1 are in the universe of B0 and that γiA0 ⊑ B0
for i ∈ 2. Let F be the universe of B0 and fix δ so that F ∩ δγ−1

0 F = ∅. Let B1
be a linear order with universe F ∪ δγ−1

0 F so that B0 ⊑ B1, δγ−1
0 B0 ⊑ B1 and

γ0 LB1 δ LB1 γ1. Then for any B ∈ N(B1) ⊆ N(B0) we have γ0A0, γ1A0, δA0 ⊑ B
and γ0 LB δ LB γ1.

Suppose now that there is a comeagre Borel equivariant set X ⊆ K(Γ) and a
Borel equivariant expansion f : X → K∗(Γ). By shrinking X, we may assume that it
is Gδ and that f is continuous. We view f as a function X → 2Γ taking A ∈ X to a
subset of Γ so that A↾f(A) ∼= Z.

Fix now some A ∈ X in which every element of AgeΓ(K) appears densely often
and let γ0 ∈ f(A) be arbitrary. By continuity and equivariance, there is some
A0 ∈ AgeΓ(K) so that A0 ⊑ A and whenever γA0 ⊑ B ∈ X we have γγ0 ∈ f(B).
In particular, C(A0, A) ⊆ f(A). But A0 appears densely often in A, contradicting
the fact that A↾f(A) ∼= Z.

We consider now the measurable case. For this, we will need the following lemma,
due to Lyons and Schramm [LS99], on the existence of “densities” of infinite random
subsets of a group Γ (see also [HP24, Section 4.2]).

Let Γ be a countably infinite group and let (Zn)n∈N be a random walk on Γ with
symmetric step distribution µ whose support generates Γ. (Note that we do not
assume µ to be finitely supported.) For γ ∈ Γ, let Pγ denote the law of the random
walk (Zn)n∈N starting at γ.

Define Ω(Γ, µ) to be the set of all W ⊆ Γ for which there exists r ∈ [0, 1] so that

lim
n→∞

1
n

n−1∑
i=0

1(Zi ∈ W ) = r, Pγ-a.s. for all γ ∈ Γ,

and for W ∈ Ω(Γ, µ) we let Freqµ(W ) be the unique such r. We note that Ω(Γ, µ) ⊆
2Γ, Freqµ : Ω(Γ, µ) → [0, 1] are Borel and Γ-invariant. (Here, 1(Zn ∈ W ) is equal to 1
when Zn ∈ W and 0 otherwise.)
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Lemma 4.19 (Existence of frequencies [LS99, Lemma 4.2]; c.f. [HP24, Lemma 4.4]).
Let Γ be a countably infinite group and µ be a symmetric probability measure on Γ
whose support generates Γ. Let ν be an invariant random equivalence relation on Γ
and let E ∼ ν. Then ν-almost surely, every equivalence class of E is contained in
Ω(Γ, µ).

We include a proof of Lemma 4.19 in Appendix A, for the reader’s convenience.

Proposition 4.20. Let Γ be a countably infinite group. There is a Borel Γ-invariant
set X ⊆ K(Γ) and a Borel equivariant expansion map f : X → K∗(Γ) such that, for
all invariant random K-structures µ on Γ, µ admits a random expansion to K∗ if and
only if µ(X) = 1, in which case f∗µ gives such an expansion.

Moreover, we can choose f so that for all A ∈ X, f(A) picks out an interval I
in A with A↾I ∼= Z.

In particular, if E is a CBER on Z induced by a free Borel action of Γ, µ is an
E-invariant probability Borel measure and A is a Borel K-structuring of E, then A is
µ-a.e. expandable to K∗ iff FA(z) ∈ X for µ-a.e. z ∈ Z.

Proof. The “in particular” part follows immediately from Proposition 3.5.
For notational convenience, we identify A ∈ K(Γ) with LA. Let κ be a fixed

symmetric probability measure on Γ whose support generates Γ.
For a given L ∈ K(Γ), let ZL denote the set of all intervals I in L for which

L↾I ∼= Z. We define X ⊆ K(Γ) to be the set of all L for which supI∈ZL
Freqκ(I)

exists, is non-zero and is attained by finitely many I ∈ ZL. For such L, we define
f(L) to be the L-least interval I ∈ ZL maximizing Freqκ(I). It is clear that f gives a
Borel equivariant expansion X → K∗(Γ).

Suppose now that µ is an invariant random K-structure on Γ admitting a random
expansion ν. Let (L, S) ∼ ν be a random variable with law ν. We claim that ν-almost
surely, for all x, y ∈ S, there are finitely many points between x and y in L. To see
this, define g(x, y, L, S), for x, y ∈ Γ, by setting g(x, y, L, S) = 1 if y is the L-least
element of S with x L y, and 0 otherwise. Note that ∑y g(x, y, L, S) is equal to 1 if x
lies between two elements of S, and 0 otherwise. On the other hand, ∑x g(x, y, L, S)
is 0 when y /∈ S, and when y ∈ S it is equal to the size of the interval (z, y] in L,
where z is the L↾S-predecessor of y.

Let now G(x, y) = E[g(x, y, L, S)]. Then by the mass transport principle (which
in this case follows simply from the invariance of ν),∑

x

G(x, y) =
∑

x

G(y, x) = E[
∑

x

g(y, x, L, S)] ≤ 1
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for all y ∈ Γ. It follows that the size of the interval [y, z] in L is almost surely finite
for all y, z ∈ S. In particular, if we take I(L, S) to be the smallest interval in L
containing S, then I(L, S) ∈ ZL almost surely. Thus, by replacing ν with the law of
(L, I(L, S)), we may assume that S ∈ ZL.

We now show that L ∈ X almost surely, i.e., µ(X) = 1. By Lemma 4.19 we may
assume that I ∈ Ω(Γ, κ) for all I ∈ ZL, i.e., that Freqκ(I) is defined for all such
intervals. By considering an ergodic decomposition of ν (cf. [Kec24, Theorem 5.12]),
we may assume that ν is ergodic. Let P[1Γ ∈ S] = r > 0. We claim that Freqκ(S) = r
almost surely. Indeed, by ergodicity Freqκ(S) is constant a.s., and by the Dominated
Convergence Theorem and invariance we have

E[Freqκ(S)] = lim
n→∞

1
n

n−1∑
i=0

P[Zi ∈ S] = lim
n→∞

1
n

n−1∑
i=0

r = r.

It follows that supI∈ZL
Freqκ(I) > 0, and by Fatou’s Lemma∑

I∈ZL

Freqκ(I) ≤ Freqκ(
⋃

ZL) ≤ 1,

so the max is attained by finitely many I ∈ ZL.

4.7 Vizing’s Theorem
Fix d ≥ 2 and let

K = {(X, E) | (X, E) is a connected graph of max degree ≤ d},

K∗ = {(X, E, S0, . . . , Sd) | (X, E) ∈ K & S0, . . . , Sd is an edge colouring of (X, E)},

as in Example 2.7.
By Vizing’s Theorem, every element of K admits an expansion in K∗. This is

false in the Borel context. In particular, Marks has shown that there is a d-regular
acyclic Borel bipartite graph with Borel edge-chromatic number 2d − 1 [Mar16], and
in [CJMST20] it is shown that there are counter-examples even for hyperfinite graphs.

On the other hand, Vizing’s Theorem holds in the Borel setting for d = 2 [KST99]
and for graphs of subexponential growth [BD25], in the measurable setting [GP20;
Gre25], and in the Baire-measurable setting for bipartite graphs [BW23].

To summarize, we have the following:

Theorem 4.21.

1. [CJMST20] For d ≥ 3, (K, K∗) enforces smoothness.
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2. [KST99] For d = 2, every CBER is Borel expandable for (K, K∗).

3. [BD25] Let K0 ⊆ K be the subclass of graphs of subexponential growth. Then
every CBER is Borel expandable for (K0, K∗).

4. [BW23] Let K1 ⊆ K be the subclass of bipartite graphs. Then every CBER
is generically expandable for (K1, K∗). In particular, K1 admits Γ-equivariant
expansions to K∗ generically for every countably infinite group Γ.

5. [GP20; Gre25] Every CBER is a.e. expandable for (K, K∗) for every (not nec-
essarily invariant) probability Borel measure. In particular, for every countably
infinite group Γ:

(a) there is a Borel invariant set Z ⊆ Fr(K(Γ)) which admits a Borel Γ-
equivariant expansion to K∗ and such that every invariant random K-
structure µ on Γ which concentrates on Fr(K(Γ)) satisfies µ(Z) = 1;
and

(b) Γ admits random expansions from K to K∗.

Proof. By [CJMST20, Theorem 1.4], we may fix an aperiodic hyperfinite CBER
E and Borel d-regular acyclic graph G on E which does not admit a Borel edge
colouring with d + 1 colours. By [JKL02, Lemma 3.23], E does not admit an invariant
probability Borel measure (as G is a treeing of E for which every component has
infinitely-many ends), so by Nadkarni’s Theorem E is compressible. (1) follows by
Proposition 3.25.

For the “in particular” parts of (4), (5), note that Fr(K1(Γ)) is dense Gδ in K1(Γ)
and apply Proposition 3.4. For (5a), apply the proof of [GP20, Theorem 4.3] to the
canonical K-structuring of Fr(K(Γ)), as in the proof of (1) above.

Remark 4.22. When d = 2, the same construction as in the proof of Proposition 4.15
gives an analogous characterization of exactly when there is a Borel equivariant
expansion map from Z ⊆ K(Γ) to K∗.

We note also that (K, K∗) enforces smoothness even if we restrict K to the class
of n-regular acyclic bipartite graphs (with a given bipartition), for n > d/2 + 1, by
[CJMST20, Theorem 1.4].

Finally, we remark that the proof of the main result of [GP20] (along with
Nadkarni’s Theorem) gives the stronger fact that for every CBER E on X and Borel
K-structuring A of E, there is a Borel E-invariant set C so that A↾C admits a Borel
expansion to K∗ and E↾(X \ C) is compressible.
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In the Baire-measurable setting, Qian and Weilacher have shown that if we replace
K∗ with (d + 2)-edge colourings, then every CBER is generically expandable [QW22].
It is open whether every CBER is generically expandable for (K, K∗).

4.8 Matchings
As in Example 2.8, let

K = {(X, E) | (X, E) is a connected, bipartite,
locally finite graph satisfying Hall’s Condition},

K∗ = {(X, E, M) | (X, E) ∈ K & M ⊆ E is a perfect matching}.

All graphs below are assumed to be in K, unless specified otherwise.
By Hall’s Theorem, every element of K admits an expansion in K∗. This is false

in the Borel context. Laczkovich and Conley and Kechris have given examples of
d-regular hyperfinite graphs with Borel chromatic number 2 which do not admit
Borel perfect matchings, even generically or a.e., for d even [Lac88; CK13]. Marks
later showed that there are d-regular, acyclic graphs with Borel chromatic number 2
that do not have Borel perfect matchings for all d ≥ 2 [Mar16], and in [CJMST20,
Theorem 1.4] this was extended to hyperfinite graphs. Kun has given examples of
such graphs that are not hyperfinite and do not admit Borel perfect matchings a.e.
[Kun24], and in [BKS22] a hyperfinite one-ended bounded-degree graph with Borel
chromatic number 2 is constructed which does not admit a Borel perfect matching
a.e.

On the other hand, if we strengthen our structural assumptions on the graphs one
can guarantee the existence of Borel perfect matchings generically or a.e. For instance,
Marks and Unger have shown that if we strengthen Hall’s Condition to assume that
|N(A)| ≥ (1+ε)|A| for some fixed ε > 0 then there is always a Borel perfect matching
generically [MU16], and Lyons and Nazarov have shown that Borel perfect matchings
exist a.e. for graphs that instead satisfy an analogous expansion property for measure
[LN11]. Conley and Miller have shown that acyclic graphs of minimum degree at least
2 which do not have infinite injective rays of degree 2 on even vertices have Borel
perfect matchings generically, and a.e. when the graph is hyperfinite [CM17] (they
showed this even for locally countable graphs in the measurable setting). Bowen,
Kun, and Sabok have shown that Borel perfect matchings exist a.e. for hyperfinite
measure-preserving regular graphs that are one-ended or have odd degree [BKS22],
and in [BCW24] the odd-degree case is shown to hold even when the measure is
not preserved. Borel perfect matchings also exist generically for regular graphs
that are one-ended [BPZ24] or have odd degree [BCW24], and for bounded-degree
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non-amenable vertex-transitive graphs [KL23] (note that this last result applies to all
graphs, not just those in K).

We note also that Borel perfect matchings have been shown to exist a.e. for some
Schreier graphs of free actions of groups; see e.g. [LN11; MU16; CL17; GMP17;
BKS22; GJKS24; Wei24] and [KM20, Sections 14, 15].

Remark 4.23. Let G be any graph (not necessarily in K). A fractional perfect
matching on G is an assignment to each edge of G a weight in [0, 1] so that for every
vertex v in G, the sum of the weights of the edges incident to v is equal to 1. Perfect
matchings are then the same as {0, 1}-valued fractional perfect matchings. We say a
fractional perfect matching is non-integral if it takes values in (0, 1).

The general strategy employed by [BKS22; BPZ24; BCW24] to find Borel perfect
matchings in a Borel locally finite graph G is to start with a Borel non-integral
fractional perfect matching on G, and then to attempt to round this Borel fractional
perfect matching to be {0, 1}-valued (off of a meagre or null set).

When G is d-regular there is always a Borel non-integral fractional perfect matching
on G, namely the one giving weight to 1/d to every edge. However, Borel non-integral
fractional perfect matchings can also be shown to exist (possibly off of a meagre
or null set) in other contexts; see [Tim23] for an example of this in the measurable
setting. The results of these papers can therefore be applied to a larger class of graphs
than e.g. the regular ones.

It may therefore be interesting to consider separately the expansion problems for
(K, K′) and (K′, K∗), where K′ is the class of graphs equipped with a (non-integral)
fractional perfect matching, though we do not explore this here.

We summarize a few of the aforementioned results below, in the language and
setting of expansions.

Let Kd (resp. Kd,ac) denote the subclass of K consisting of d-regular (resp. d-
regular acyclic) graphs. Note that these are Gδ classes of structures. Let K0 ⊆ K
denote the class of graphs that are either acyclic with no infinite injective rays of
degree 2 on even vertices, are regular and one-ended, or are regular of odd degree. Let
K1 ⊆ K denote the class of graphs that satisfy the strengthening of Hall’s Condition
for ε-expansion for some ε > 0, or are vertex-transitive, non-amenable and have
bounded degree. These are Borel classes of structures.

Theorem 4.24.

1. [CJMST20] (Kd,ac, K∗) enforces smoothness for d ≥ 2. [Lac88; CK13] In
particular, (Kd, K∗) and (K, K∗) enforce smoothness.
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2. K2 does not admit Γ-equivariant expansions to K∗ generically, for any countably
infinite group Γ.

3. For every countably infinite group Γ and d > 2, Kd admits Γ-equivariant
expansions to K∗ generically. [MU16] So does Kd,ac.

4. [MU16; CM17; BPZ24; BCW24; KL23] Every CBER is generically expandable
for (K0 ∪ K1, K∗).

5. [CM17; BKS22] Every hyperfinite CBER is a.e. expandable for (K0, K∗) for
every invariant probability Borel measure. In particular, for every countably
infinite amenable group Γ:

(a) there is a Borel invariant set Z ⊆ Fr(K0(Γ)) which admits a Borel Γ-
equivariant expansion to K∗ and such that every invariant random K0-
structure on Γ which concentrates on Fr(K0(Γ)) satisfies µ(Z) = 1; and

(b) Γ admits random expansions from K0 to K∗.

Proof. (1) By [CJMST20, Theorem 1.4], there is an aperiodic hyperfinite CBER
and a Borel d-regular acyclic graph G on E which does not admit a Borel perfect
matching. By [JKL02, Lemma 3.23], E does not admit an invariant probability Borel
measure (as G is a treeing of E for which every component has infinitely-many ends),
so by Nadkarni’s Theorem E is compressible. We then apply Proposition 3.25.

(2) Suppose otherwise, and let X ⊆ K2(Γ) be Borel, comeagre and invariant, and
let f : X → K∗(Γ) be a Borel equivariant expansion. It is not hard to see that the
set of all A for which

for all A0 ∈ AgeΓ(K2) there is some γ ∈ Γ with γA0 ⊑ A

is a dense Gδ set in K2(Γ), and we may therefore assume that every element of X
has this property. By further shrinking X, we may assume that f is continuous.

Fix now some A ∈ X and γ0, γ1 ∈ Γ so that γ0, γ1 are matched in f(A). By
continuity and equivariance, there is some A0 ∈ AgeΓ(K2) so that A0 ⊑ A, and
whenever γA0 ⊑ B ∈ X we have that γγ0, γγ1 are matched in f(B).

Let A1 ∈ AgeΓ(K2) and γ ∈ Γ be such that A0, γA0 ⊑ A1, A1 is connected, and
the unique path in A1 whose first edge is {γ0, γ1} and whose last edge is {γγ0, γγ1}
has even length. Let δ be such that δA1 ⊑ A. Then {δγ0, δγ1}, {δγγ0, δγγ1} ∈ f(A),
but the unique path in A containing these edges at either end has even length, which
is impossible as A is a bi-infinite line and f(A) is a perfect matching.

(3) By [BPZ24, Theorem 1.2], it suffices by Proposition 3.4(2) to show that the
generic element of Kd is one-ended (note that Fr(Kd(Γ)) is comeagre in Kd(Γ)). To
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see this, note that a d-regular graph G is one-ended if and only if for every finite set
F of vertices and all vertices u, v, one of the following holds:

• There is some finite set of vertices F ′ such that at least one of u, v is contained
in F ′, and the boundary of F ′ is contained in F .

• There is a path in G from u to v which does not include any vertices in F .

It is easy to see that the set of graphs satisfying one of these conditions for any fixed
F, u, v is open and dense in Kd, and hence the set of graphs satisfying these conditions
for all F, u, v is comeagre.

For Kd,ac, this follows by Proposition 3.4(2) and [MU16, Theorem 1.3].
(4) is an immediate consequence of the (proofs in) the cited papers, and (5b)

follows similarly by Proposition 3.4(3).
(5a) We split K0 into three parts: The acyclic graphs with no infinite injective rays

of degree 2 on even vertices, the regular one-ended graphs, and the regular odd-degree
graphs. We will give some detail for the last case, and then sketch the first two.

For the regular odd-degree graphs, we argue as follows: We consider each degree
d ≥ 3 separately. Let X be the free part of K0(Γ) restricted to the regular d-
degree graphs and let A be the canonical structuring of X. By the proof of [BKS22,
Theorem 1.3] one can associate to each t ∈ 2N a Borel fractional perfect matching on
A so that for every invariant probability Borel measure µ on X, for almost every t the
corresponding fractional perfect matching is {0, 1}-valued for µ-a.e. component of A.
By [Kec95, 18.6], we can choose in a uniformly Borel way a Borel fractional perfect
matching fµ for every ergodic invariant measure µ on X, so that fµ is {0, 1}-valued
for µ-a.e. component of A. Let Xµ denote the set of components for which fµ is {0, 1}-
valued. By considering an ergodic decomposition of X (cf. [Kec24, Theorem 5.12]),
the set Z = ⋃

µ Xµ is Borel, and f = ⋃
µ fµ↾Xµ gives a Borel perfect matching of

A↾Z. Moreover, µ(Z) = 1 for every invariant probability Borel measure on X. By
Proposition 3.4(2), we are done.

For the acyclic graphs with no infinite injective rays of degree 2 on even vertices,
the argument is similar: We consider an ergodic decomposition, and note that the
proof of [CM17, Theorem B] is effective enough that the union of the solutions (and
their domains) for all ergodic invariant probability Borel measures is still Borel.

For the regular one-ended graphs, we again consider an ergodic decomposition
and argue that the proof of [BKS22, Theorem 1.1] is sufficiently uniform. For a fixed
measure µ, the proof proceeds by constructing a transfinite sequence of fractional
perfect matchings, and arguing that this must stabilize at some countable ordinal.
We claim that the construction of this sequence is effective (in µ). Then, by the
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Boundedness Theorem for analytic well-founded relations [Kec95, 31.1] there is a
uniform bound on how long these sequences take to stabilize for all (ergodic) invariant
probability Borel measures, so we are done by the same argument as in the previous
two cases.

The verification that the construction is effective is tedious but straightforward.
The most subtle step is in the use of the Choquet–Bishop–de Leeuw Theorem, which
is sufficiently effective for separable metrizable spaces as this essentially boils down
to an application of compact uniformization, see e.g. [Phe01, Section 3; Sim09, IV.9;
Kec95, 28.8].

5 Problems
Problem 5.1. Does the conclusion of Theorem 3.13 hold for classes of structures
without TAC?

In [CK18], it is shown that for many natural classes of aperiodic CBER E , there is a
Borel class of structures K so that E ∈ E if and only if E admits a Borel K-structuring.
Nonetheless, it is interesting whether there is any “natural” class of problems (e.g.
problems that are studied in finite combinatorics) that carve out interesting classes E
of CBER. Example 2.6 was an attempt to characterize hyperfiniteness, though we
have seen that it actually enforces smoothness.

Problem 5.2. Let E be a class of aperiodic CBER such as those that are hyperfinite,
(non)-compressible or treeable. Is there a “natural” expansion problem (K, K∗) for
which an aperiodic CBER E is Borel expandable if and only if E ∈ E?

In [GX24] a problem is described for which E admits solutions exactly when E is
hyperfinite. However, this does not fit the framework of expansion problems, as it
involves finding “approximate” solutions.

We note that the spanning tree example (Example 2.5) corresponds to a class of
CBER that lies somewhere between hyperfinite and treeable.

Problem 5.3. What is the class of CBER that are Borel expandable for the spanning
tree problem?

In general, it would be interesting to answer the problems remaining in Table 1.
We highlight a few of these below.

Problem 5.4. For the Ramsey expansion problem (Example 2.2), when an invariant
random structure admits an invariant random expansion? Can we characterize
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a.e. expansions (in the sense of Section 3.3)? Under what assumptions to generic
expansions exist on CBER?

Problem 5.5. Can we say more about when a Borel structuring of a CBER by
partial orders is expandable to a Borel structuring by linear orders? In particular,
is there a characterization of exactly which invariant random expansions come from
push-forwards along a.e. equivariant expansion maps?

Problem 5.6. Does Vizing’s Theorem hold generically?

There are many open problems regarding the existence of perfect matchings; see
Section 4.8 for details. As noted in Remark 4.23, one can often find perfect matchings
by first finding non-integral fractional perfect matchings, and then rounding them.

Problem 5.7. What can be said about the expansion problem of finding a non-
integral fractional perfect matching on a Borel graph? When can we round non-integral
fractional perfect matchings to perfect matchings?

See e.g. [BKS22; Tim23; BPZ24] for some partial results and examples.

Appendix A. Existence of frequencies
The purpose of this appendix is to prove Lemma 4.19 on the existence of frequencies.
The proof is essentially the same as that of [LS99, Lemma 4.2], though we work here
in a more general setting; we also thank Minghao Pan for sharing with us his notes
about this proof.

We begin by recalling some definitions.
Let Γ be a countably infinite group and let (Zn)n∈N be a random walk on Γ with

symmetric step distribution µ whose support generates Γ. (Note that we do not
assume µ to be finitely supported.) For γ ∈ Γ, let Pγ denote the law of the random
walk (Zn)n∈N starting at γ.

Define Ω(Γ, µ) to be the set of all W ⊆ Γ for which there exists r ∈ [0, 1] so that

lim
n→∞

1
n

n−1∑
i=0

1(Zi ∈ W ) = r, Pγ-a.s. for all γ ∈ Γ,

and for W ∈ Ω(Γ, µ) we let Freqµ(W ) be the unique such r. We note that Ω(Γ, µ) ⊆
2Γ, Freqµ : Ω(Γ, µ) → [0, 1] are Borel and Γ-invariant. (Here, 1(Zn ∈ W ) is equal to 1
when Zn ∈ W and 0 otherwise.)

55



Note that if limn→∞
1
n

∑n−1
i=0 1(Zi ∈ W ) converges Pγ-almost surely for some γ,

then it does for all γ. To see this, note that the support of µ generates Γ, so if the
sequence diverges with positive probability for a random walk starting at some γ,
then this happens with positive probability for a random walk starting at any γ.
Similarly, we see that the value of the limit (should it exist) does not depend on the
choice of γ.

Let now K denote the class of equivalence relations. Let ν be an invariant
random equivalence relation on Γ, i.e. an invariant random K-structure on Γ, and
let E ∼ ν. Let e denote the identity in Γ. We will show that ν-almost surely,
limn→∞

1
n

∑n−1
i=0 1(Zi ∈ C) converges to a constant value Pe-a.s. for every E-class C.

By the previous remark, this proves Lemma 4.19.
A two-sided random walk starting at γ is a sequence of random variables (Zn)n∈Z

so that (Zn)n∈N and (Z−n)n∈N are random walks starting at γ. Let P̂γ denote the law
of the two-sided random walk starting at γ.

Note that Γ acts on ΓZ by coordinate-wise multiplication, so that we may consider
K(Γ) × ΓZ with the diagonal action of Γ:

γ · (E, (Zn)n∈Z) = (γ · E, (γ · Zn)n∈Z).

We also define the shift map S : K(Γ)×ΓZ → K(Γ)×ΓZ to be the map S(E, (Zn)n∈Z) =
(E, (Zn+1)n∈Z). Note that the actions of Γ, S on K(Γ) × ΓZ commute.

Let I denote the σ-algebra of Γ-invariant Borel sets in K(Γ)×ΓZ, and set λ = ν×P̂e.
Also, for E ∈ K(Γ), let Γ/E denote the set of equivalence classes of E.
Claim A.1. If A ∈ I, then λ(A) = λ(S · A).
Proof. Let W n

γ = {Z = (Zn)n∈Z : Zn = γ}. Note that by the symmetry of µ,

∑
γ∈Γ

P̂γ[W j
γj

∩ · · · ∩ W k
γk

] =
k−1∏
i=j

µ(γ−1
i γi+1)

for all j < 0 < k ∈ Z and γj, . . . , γk ∈ Γ. It follows that ∑γ∈Γ P̂γ is shift-invariant.
Let now κ = ν × ∑

γ∈Γ P̂γ. Note that κ is Γ-invariant. If A ∈ I, then by
Γ-invariance we have

κ(A ∩ W 0
e ) =

∑
γ

κ(A ∩ W 0
e ∩ W −1

γ ) =
∑

γ

κ(A ∩ W 0
γ ∩ W −1

e ) = κ(A ∩ W −1
e ).

It follows that

λ(SA) = κ(SA ∩ W 0
e ) = κ(SA ∩ W −1

e ) = κ(S(A ∩ W 0
e )) = κ(A ∩ W 0

e ) = λ(A).

◁
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For C ⊆ Γ, Z = (Zn)n∈Z ∈ ΓZ, m < n ∈ Z, let

αn
m(C, Z) = 1

n − m

n−1∑
i=m

1(Zi ∈ C),

and for (E, Z) ∈ K(Γ) × ΓZ, n, k ∈ N let

F n
k (E, Z) = n·max{αn

0 (C0, Z)+· · ·+αn
0 (Ck−1, Z) : C0, . . . , Ck−1 are distinct E-classes}.

It is easy to see that F i+j
k (E, Z) ≤ F i

k(E, Z) + F j
k (Si · (E, Z)) and that each F n

k is
Γ-invariant. By Claim A.1 and Kingman’s Subadditive Ergodic Theorem (see e.g.
[Ste89]) there are Γ, S-invariant maps Fk, k ∈ N so that Fk(E, Z) = limn→∞

F n
k (E,Z)

n

λ-a.s.
Let now

An(E, Z) = {|αm
0 (C, Z) − αk

0(C, Z)| : k, m ≥ n & C ∈ Γ/E}.

Claim A.2. limn→∞ max(An(E, Z)) = 0 for almost every (E, Z).

Proof. Fix (E, Z) for which Fk(E, Z) = limn→∞
F n

k (E,Z)
n

for all k ∈ N.
For any E-class C and n ∈ N, there is some k so that αn

0 (C, Z) = F n
k (C,Z)

n
− F n

k−1(C,Z)
n

,
namely the k for which C is the k-th most frequently visited E-class in the first n
steps of Z. It follows that

αm
0 (C, Z) ∈ Sn =

{
F m

k (E, Z)
m

−
F m

k−1(E, Z)
m

: k ≥ 1, m ≥ n

}

for m ≥ n.
Let Sn(δ) denote the δ-neighbourhood of Sn in [0, 1]. Since |αm+1

0 (C, Z) −
αm

0 (C, Z)| ≤ 1
m

, the set {αm
0 (C, Z) : m ≥ n} is contained in a single connected

component of Sn( 1
n
), for every E-class C. It therefore suffices to show that for all

ε > 0, there is some n sufficiently large that Sn( 1
n
) has length at most ε.

Fix now ε > 0, and fix k sufficiently large that Fj(E, Z) − Fj−1(E, Z) ≤ ε for
j ≥ k. Fix n so that |Fj(E, Z) − F m

j (E,Z)
m

| ≤ ε
k+1 for all j ≤ k and m ≥ n. It follows

that every point in Sn is within distance ε from 0, or ε
k+1 from Fj(E, Z) − Fj−1(E, Z)

for some j ≤ k, so that Sn( 1
n
) has length at most 3(ε + 1

n
). Since ε was arbitrary, this

proves the claim. ◁

It follows that for almost every (E, Z), (αn
0 (C, Z))n∈N is Cauchy for every E-class

C, and hence this sequence converges. Symmetrically, (α0
−n(C, Z))n∈N converges a.s.

for every E-class C.
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Note that with probability 1

max
C∈Γ/E

|α2n
n (C, Z) − αn

0 (C, Z)| = 2 · max
C∈Γ/E

|α2n
0 (C, Z) − αn

0 (C, Z)| n→∞−−−→ 0,

so we may fix a sequence nk such that

P
[

max
C∈Γ/E

|α2nk
nk

(C, Z) − αnk
0 (C, Z)| ≥ 2−k

]
≤ 2−k.

By Claim A.1,

P
[

max
C∈Γ/E

|α2nk
nk

(C, Z) − αnk
0 (C, Z)| ≥ 2−k

]
= P

[
max

C∈Γ/E
|αnk

0 (C, Z) − α0
−nk

(C, Z)| ≥ 2−k

]
,

so by the Borel–Cantelli Lemma we have that for almost every (E, Z),

max
C∈Γ/E

|αnk
0 (C, Z) − α0

−nk
(C, Z)| < 2−k

for all but finitely many k. It follows that

lim
n→∞

αn
0 (C, Z) = lim

n→∞
α0

−n(C, Z)

almost surely for all C ∈ Γ/E. But for any fixed C ⊆ Γ, αn
0 (C, Z), α0

−n(C, Z) are
independent, so the limits are independent and hence must be constant a.s.
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